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APPENDIX A
DERIVATION OF THE ERROR BOUND

To reduce the error Af, our method aims to select the
triplet with the maximum standard deviation. The standard
deviation o; for the j-th triplet is calculated from (the
arguments are omitted for simplicity):
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Since the computation of the variance of RqH involves
costly evaluations of R;H over all VPLs, irradiance points,
and shading points in the triplet ((C]L,(C]I- ,(Cf), and the
standard deviation is just used to select the triplet with (pos-
sibly) a large error, our method approximates the standard
deviation using the upper bounds of the diffuse BSSRDF
R}, the geometry term G*, and the Fresnel transmittance
F}* as follows:
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cosine of the scattering angle, oy, is the effective extinction
coefficient, A is calculated by the diffuse Fresnel reflectance.

The diffuse BSSRDF Ry4(r) is also a monotonically de-
creasing function with respect to the distance r between an
irradiance point and a shading point. As such, the upper
bound R} is calculated from the minimum distance between
the bounding boxes of IC (C§ and SC (Cf .
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The standard deviation of the visibility function, \/Var [V],
is bounded by the maximum value 0.5 [1]. By substituting
this, the error bound e; is derived.

A.1 The geometry term G and the upper bounds G*
and F}

The geometry term G(y,x;) between the VPL y and the

irradiance point x; is calculated as:

max(cos 8y, 0) max(cos bx,,0)
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where 0y, is the angle between the normal at y and —wyx,,

and 0y, is that between the normal n; at x; and wyx, .

The upper bound G" of the geometry term between
IC (C§ and LC (Cf is calculated in the same way as Mul-
tidimensional Lightcuts [2]. Since the computation of the
upper bound G* involves computation of the upper bound
of cosfy, (i.e., the lower bound of fy,;), and the Fresnel
transmittance F; decreases monotonically 'with respect to
the angle 0,, the upper bound F}* between (C]I» and (C]L is
easily computed using the lower bound of ;.
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A.2 The diffuse BSSRDF R,(r) and its upper bound R}
The diffuse BSSRDF R,(r) is represented by the following
—0o¢rdy e_o'trdv

equation [6]:
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where 0, 05, and o, are absorption, scattering, and extinc-
tion coefficients for a translucent material, o/, and o} are
reduced scattering and extinction coefficients, g is the mean

1. Strictly speaking, F; decreases monotonically when the relative
refractive index 7 satisfies € [2— V3, 2+ \/3] [3], and 7 for translucent
materials used in our method satisfies this condition.
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