APPENDIX A DERIVATION OF THE ERROR BOUND

To reduce the error $\Delta \hat{\mathcal{I}}$, our method aims to select the triplet with the maximum standard deviation. The standard deviation σ_j for the *j*-th triplet is calculated from (the arguments are omitted for simplicity):

$$\sigma_j = \sqrt{\operatorname{Var}\left[\hat{\mathcal{I}}_j\right]} = \frac{A_j W_j I_j}{\sqrt{n_j}} \sqrt{\operatorname{Var}\left[R_d H\right]}$$

Since the computation of the variance of R_dH involves costly evaluations of R_dH over all VPLs, irradiance points, and shading points in the triplet $(\mathbb{C}_j^L, \mathbb{C}_j^I, \mathbb{C}_j^S)$, and the standard deviation is just used to select the triplet with (possibly) a large error, our method approximates the standard deviation using the upper bounds of the diffuse BSSRDF R_d^u , the geometry term G^u , and the Fresnel transmittance F_t^u as follows:

$$\sigma_j = \frac{A_j W_j I_j}{\sqrt{n_j}} \sqrt{\operatorname{Var}\left[R_d G V F_t\right]} \approx \frac{A_j W_j I_j}{\sqrt{n_j}} R_d^u G^u F_t^u \sqrt{\operatorname{Var}\left[V\right]}.$$

The standard deviation of the visibility function, $\sqrt{Var[V]}$, is bounded by the maximum value 0.5 [1]. By substituting this, the error bound e_i is derived.

A.1 The geometry term G and the upper bounds G^u and F_t^u

The geometry term $G(\mathbf{y}, \mathbf{x}_i)$ between the VPL \mathbf{y} and the irradiance point \mathbf{x}_i is calculated as:

$$G(\mathbf{y}, \mathbf{x}_i) = \frac{\max(\cos \theta_{\mathbf{y}}, 0) \max(\cos \theta_{\mathbf{x}_i}, 0)}{\|\mathbf{y} - \mathbf{x}_i\|^2}$$

where $\theta_{\mathbf{y}}$ is the angle between the normal at \mathbf{y} and $-\omega_{\mathbf{y}\mathbf{x}_i}$, and $\theta_{\mathbf{x}_i}$ is that between the normal \mathbf{n}_i at \mathbf{x}_i and $\omega_{\mathbf{y}\mathbf{x}_i}$.

The upper bound G^u of the geometry term between IC \mathbb{C}_j^I and LC \mathbb{C}_j^L is calculated in the same way as Multidimensional Lightcuts [2]. Since the computation of the upper bound G^u involves computation of the upper bound of $\cos \theta_{\mathbf{x}_i}$ (i.e., the lower bound of $\theta_{\mathbf{x}_i}$), and the Fresnel transmittance F_t decreases monotonically ¹with respect to the angle $\theta_{\mathbf{x}_i}$, the upper bound F_t^u between \mathbb{C}_j^I and \mathbb{C}_j^L is easily computed using the lower bound of $\theta_{\mathbf{x}_i}$.

A.2 The diffuse BSSRDF $R_d(r)$ and its upper bound R_d^u . The diffuse BSSRDF $R_d(r)$ is represented by the following equation [6]:

$$\begin{aligned} \frac{\alpha'}{4\pi} \left[z_r \left((1 + \sigma_{tr} d_r) \frac{e^{-\sigma_{tr} d_r}}{d_r^3} \right) + z_v \left((1 + \sigma_{tr} d_v) \frac{e^{-\sigma_{tr} d_v}}{d_v^3} \right) \right], \\ d_r &= \sqrt{r^2 + z_r^2}, d_v = \sqrt{r^2 + z_v^2}, z_r = \frac{1}{\sigma_t'}, z_v = z_r \left(1 + \frac{4}{3} \mathcal{A} \right) \\ \sigma_{tr} &= \sqrt{3\sigma_a \sigma_t'}, \sigma_t' = \sigma_s' + \sigma_a, \sigma_s' = \sigma_s (1 - g), \alpha' = \frac{\sigma_s'}{\sigma_t'} \end{aligned}$$

where σ_a , σ_s , and σ_t are absorption, scattering, and extinction coefficients for a translucent material, σ'_s and σ'_t are reduced scattering and extinction coefficients, g is the mean cosine of the scattering angle, σ_{tr} is the effective extinction coefficient, A is calculated by the diffuse Fresnel reflectance.

The diffuse BSSRDF $R_d(r)$ is also a monotonically decreasing function with respect to the distance r between an irradiance point and a shading point. As such, the upper bound R_d^u is calculated from the minimum distance between the bounding boxes of IC \mathbb{C}_i^I and SC \mathbb{C}_i^S .

^{1.} Strictly speaking, F_t decreases monotonically when the relative refractive index η satisfies $\eta \in [2-\sqrt{3}, 2+\sqrt{3}]$ [3], and η for translucent materials used in our method satisfies this condition.

REFERENCES

- K. Nabata, K. Iwasaki, Y. Dobashi, and T. Nishita, "An error estimation framework for many-light rendering," *Computer Graphics Forum*, vol. 35, no. 7, pp. 431–439, 2016.
- Forum, vol. 35, no. 7, pp. 431–439, 2016.
 [2] B. Walter, A. Arbree, K. Bala, and D. P. Greenberg, "Multidimensional lightcuts," ACM Transactions on Graphics, vol. 25, no. 3, pp. 1081–1088, 2006.
- [3] Y. Tokuyoshi and T. Harada, "Stochastic light culling for VPLs on GGX microsurfaces," *Computer Graphics Forum*, vol. 36, no. 4, pp. 55–63, 2017.