
Efficient Visualization of Light Pollution for the Night Sky
YOSHINORI DOBASHI, Hokkaido University, Prometech CG Research, Japan
NAOTO ISHIKAWA, Hokkaido University, Japan
KEI IWASAKI, Saitama University, Prometech CG Research, Japan

Artificial light sources make our daily life convenient, but cause a severe
problem called light pollution. We propose a novel system for efficient visu-
alization of light pollution in the night sky. Numerous methods have been
proposed for rendering the sky, but most of these focus on rendering of the
daytime or the sunset sky where the sun is the only, or dominant light source.
For the visualization of the light pollution, however, we must consider many
city light sources on the ground, resulting in excessive computational cost.
We address this problem by precomputing a set of intensity distributions
for the sky illuminated by city light at various locations and with different
atmospheric conditions. We apply a principal component analysis and fast
Fourier transform to the precomputed distributions, allowing us to efficiently
visualize the extent of the light pollution. Using this method, we can achieve
one to two orders of magnitudes faster computation compared to a naive
approach that simply accumulates the scattered intensity for each viewing
ray. Furthermore, the fast computation allows us to interactively solve the in-
verse problem that determines the city light intensity needed to reduce light
pollution. Our system provides the user with both a forward and inverse
investigation tool for the study and minimization of light pollution.

CCS Concepts: • Computing methodologies→ Rendering.

Additional Key Words and Phrases: light pollution, the night sky, principal
component analysis, fast Fourier transform

ACM Reference Format:
Yoshinori Dobashi, Naoto Ishikawa, and Kei Iwasaki. 2023. Efficient Visu-
alization of Light Pollution for the Night Sky. ACM Trans. Graph. 42, 6,
Article 219 (December 2023), 11 pages. https://doi.org/10.1145/3618337

1 INTRODUCTION
The sky is complex and beautiful. Many computer graphics re-
searchers have tried to reproduce the beauty of the sky under dif-
ferent lighting and atmospheric conditions. For the familiar blue
and the sunset sky, the sun is the primary light source that deter-
mines the appearance of the sky. After sunset, the sky exhibits a
completely different appearance, together with the moon and the
stars. However, there is another source of light at night, artificial
light sources in the city, that often ruins the beauty of the night
sky. Whilst artificial light sources make our daily life convenient
and comfortable during the night, they also cause a severe prob-
lem called light pollution. Inappropriate or excessive artificial light
sources can have serious negative impacts on our health, ecosystems,

Authors’ addresses: Yoshinori Dobashi, Hokkaido University, Prometech CG Research,
Kita 14, Nishi 9, Sapporo, 060-0814, Japan, doba@ime.ist.hokudai.ac.jp; Naoto Ishikawa,
Hokkaido University, Kita 14, Nishi 9, Sapporo, 060-0814, Japan, ishikawa@ime.ist.
hokudai.ac.jp; Kei Iwasaki, Saitama University, Prometech CG Research, –, Saitama, –,
Japan, kiwasaki@mail.saitama-u.ac.jp.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0730-0301/2023/12-ART219 $15.00
https://doi.org/10.1145/3618337

and of course on the aesthetic environment [Gaston et al. 2013]. In
an analysis of the influence of the artificial light sources on these
factors, the visualization of the light pollution plays a significant
role, which we focus on in this paper.

Many methods have been developed for the efficient rendering of
the daytime or the sunset sky where the sun is the only light source
(e.g., [Preetham et al. 1999]). For the visualization of the light pollu-
tion for the night sky, however, we must consider many artificial
light sources on the ground, resulting in increased computational
cost. Our goal is fast visualization of the light pollution that allows
the user to interactively investigate the influence of city lights on the
night sky. We want to allow the user to interactively investigate the
influence of the city light on the sky with a forward and an inverse
approach. With the forward approach, the light pollution should
be visualized in real-time for an arbitrary observer location under
different atmospheric conditions. The inverse approach should then
allow the user to interactively control the city light to investigate
how we can reduce light pollution. To achieve these functions, we
propose a fast method for computing the intensity of the sky, or
skyglow, given a density distribution of light sources on the ground.

We employ a precomputation-based approach to achieve this goal.
Our method precomputes the intensity of the sky under different
lighting and atmospheric conditions. To save on the storage cost
for the precomputed data, we compress the data using principal
component analysis (PCA) followed by Fast Fourier Transform (FFT).
This also allows us to achieve a fast intensity calculation. Note that
our primary focus is on the fast computation of skyglow due to the
presence of city lights consisting of a large number of artificial light
sources. Our method is independent of how the scattered intensity
is computed; we can use any computational models for the light
scattering. In this paper, we primarily employ a single scattering
model for computing the skyglow, while also demonstrating that
our method can accommodate multiple scattering.
This paper is organized as follows. Section 2 discusses the pre-

vious work on rendering the sky. Section 3 proposes the fast com-
putation method for the skyglow. Next, Section 4 describes our
inverse investigation tools. Section 5 shows experimental results to
investigate the effectiveness and usefulness of the proposed method.
Section 6 discusses the limitations of our method and future research
directions. Finally, Section 7 concludes this paper.

2 RELATED WORK
Research on the realistic rendering of the sky has a long history.
The first research was done by Klassen [1987] who tried to display
the sky color by considering the spectral distribution of the light
scattered by particles in the atmosphere. However, this model rep-
resented the atmosphere as multiple plane-parallel layers and was
not appropriate for rendering realistic images. Kaneda et al. [1991]
then proposed an improved and more realistic model in which they

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

HTTPS://ORCID.ORG/1234-5678-9012-3456
HTTPS://ORCID.ORG/1234-5678-9012-3456
HTTPS://ORCID.ORG/1234-5678-9012-3456
https://doi.org/10.1145/3618337
https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012-3456
https://doi.org/10.1145/3618337

219:2 • Dobashi, Y. et al

employed a spherical-shell representation for the atmosphere and
the density distributions of both air molecules and aerosols were
assumed to vary exponentially with altitude. Nishita et al. [1993]
further extended the model to the rendering of the earth viewed
from space. These early researchers provide the fundamentals for a
realistic rendering of the sky.
Following on from those fundamental papers, several real-time

methods have been investigated for rendering the sky by using
advanced graphics hardware or GPUs [Dobashi et al. 2002][O’Neil
2007][Wenzel 2007]. An analytical method for single scattering has
also been proposed [Sun et al. 2005]; however, the method’s main
objective is not related to rendering the sky. Methods considering
multiple scattering of light have also been developed to improve the
realism of the synthetic sky [Bruneton and Neyret 2008][Hillaire
2020]. Since the computation of the multiple scattering is usually
expensive, these methods use lookup tables for acceleration.
Another research direction is a data-driven approach to derive

a compact and easy-to-use representation for computing the in-
tensity of the sky under the different sun directions and different
atmospheric conditions. Pioneering work in this direction was done
by Preetham et al. [1999], in which an analytical model was de-
rived by fitting basis function coefficients to simulated intensity
distributions of the sky. Hosek et al. [2012] improved this model to
accurately render sunsets and high atmospheric turbidity scenes.
Wilkie et al. [2021] made further improvements by using the at-
mospheric measurement data. A machine-learning-based approach
was also proposed to compactly represent the sky illumination
from both existing analytic sky models and captured environmental
maps [Satilmis et al. 2017].
All the above methods, however, focus on the rendering of the

daytime or the sunset sky, so they are not suitable for the visualiza-
tion of the light pollution for the night sky. Jensen et al. [2001] were
the first to render the night sky in a physically-based manner. This
method uses a path tracer to synthesize realistic images of the night
sky including the moon and the stars, considering the multiple scat-
tering of light. Minor et al. [2016] extended this method to consider
artificial light sources. However, this method is computationally
expensive since it is also based on path tracing.

Researchers in the field of light pollution developed several ana-
lytical models for computing the intensity of the sky illuminated by
artificial light sources [Solano Lamphar 2018]. Such models consider
the atmospheric scattering of light radiated from the city. Amongst
these, the model proposed by Garstang [1986] is widely used by
many researchers, and many improved models have been developed
based on this work. Kocifaj [2007] extended this model to consider
a cloudy sky, which was used in a light pollution visualization sys-
tem [Kocifaj and Kundracik 2016]. An open-source tool, Skyglow
Estimation Toolbox, has been developed by NASA and can also be
used to visualize light pollution [Avery et al. 2017]. Further exten-
sion has been made to include different physical processes such
as multiple scattering, the Earth’s curvature and scattering phase
functions [Cinzano and Falchi 2012; Kocifaj 2018]. However, these
methods are not fast enough for real-time visualization of the sky-
glow viewed from an arbitrary location. A method of expanding the
skyglow distribution into basis functions was proposed for efficient

city light distribution

viewing ray

observer

Fig. 1. Overview of the light pollution computation.

evaluation of the skyglow [Bará et al. 2015]. However, the computa-
tion is still too slow for our purpose since we must consider many
light sources in the city. For fast computation of the light pollution
map, which records the total light flux at every location due to the
surrounding city light sources, several researchers have developed
point spread functions that enable fast computation of the map
using fast Fourier transform methods [Bará et al. 2020; Falchi and
Bará 2021; Simoneau et al. 2021]. However, these methods are not
applicable to the computation of the skyglow distribution observed
at an arbitrary location. Furthermore, no methods have been devel-
oped for an efficient and interactive solution of the inverse problems
of light pollution.

3 FAST COMPUTATION OF SKYGLOW
This section describes our method for the fast computation of the
skyglow. The input to our system is the terrain geometry and the
density distribution of light sources on the ground. The skyglow
images are rendered in real-time for arbitrary locations of the ob-
server. Note that our method does not consider the occlusion of light
by the terrain. We first explain an overview of the light pollution
computation in Section 3.1. Section 3.2 describes the computation
of the skyglow due to a single infinitesimal area light source. Next,
the formulation for our fast computation method is provided in
Section 3.3. The implementation details of the method are described
in Section 3.4.

3.1 Light Pollution Computation
When we want to visualize the light pollution, or the skyglow,
over the whole sky, we need to calculate the intensity of the sky
for every viewing direction considering all the surrounding city
light sources as shown in Fig. 1. For each point on each viewing
ray, we need to accumulate the contribution from those city light
sources. A city light at several tens of kilometers from the observer
could have visible contributions to the intensity of the sky. This is
particularly true when the observer is located at a higher location,
such as the one in a mountain, where the light pollution is often
most problematic. Thus, the distribution of the city light needs to
be considered and should cover a wide range of regions, resulting
in extremely expensive computational cost.
Since modeling individual light sources is impractical, we rep-

resent the city lights with a density distribution of light sources

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

Efficient Visualization of Light Pollution for the Night Sky • 219:3

infinitesimal area light

observer

ho

viewing ray
P(u)

Lsc(P)

u

y

z

θ
x

φ

scattered light
P(uc)

hs

r

dS

Fig. 2. Computation of skyglow.

on the ground. The density at each point corresponds to the emit-
ted light flux per unit area from that point. We assume that the
light is emitted to the zenith direction. The skyglow is rendered by
accumulating the contribution over the distribution. In the compu-
tation of the skyglow, we do not consider the occlusion of the light
by the terrain (we will discuss viable solutions to this limitation
in Section 6). We employ a precomputation approach for efficient
visualization. In the preprocess, we calculate a set of skyglow dis-
tributions due to infinitesimal area light sources located at various
distances and altitudes, each with unit light flux. Our method then
applies the principal component analysis to them, followed by the
Fourier transform, for faster computation of the runtime process
and for reducing the storage cost. In the following subsections, we
start the explanation of our method with the computation of the
skyglow due to an infinitesimal area light source.

3.2 Skyglow by a Single Light Source
The skyglow intensity observed at a certain location is determined
by accumulating the scattered intensities on a viewing ray. The in-
tensity depends on the altitude of the light source and the observer
as well as the atmospheric condition. For the atmospheric condi-
tion, we use a single parameter called turbidity that determines the
reduction in the transparency of air [Preetham et al. 1999]. The
skyglow due to an infinitesimal area light source is explained in the
following.

As shown in Fig. 2, we assume that the observer is at the origin and
we represent the locations of the light source with a polar coordinate.
That is, the location of the light source is represented with the
distance from the observer, the azimuth angle from 𝑥 axis, and the
altitude. Let us consider the differential distribution of the skyglow,
𝑑𝑏 [𝑊 /𝑠𝑟], due to the infinitesimal area light source with unit light
flux, located at distance 𝑟 along 𝑥 axis. Then, 𝑑𝑏 is expressed by the
following equation.

𝑑𝑏 = 𝑏 (𝜃, 𝜙, 𝑟, ℎ𝑐 , ℎ𝑜 , 𝜏, 𝜆)𝑑𝑆, (1)

where𝑑𝑆 is the area of the light source.𝑏 is the accumulated intensity
of the scattered light reaching from a point on the light source, as

expressed by:

𝑏 (𝜃, 𝜙, 𝑟, ℎ𝑐 , ℎ𝑜 , 𝜏, 𝜆) =
∫ ∞

0
𝐿𝑠𝑐 (𝑃 (𝑢), 𝑟 , 𝜃, ℎ𝑐 , ℎ𝑜 , 𝜏, 𝜆)𝑑𝑢, (2)

where (𝜃, 𝜙) represents the direction of the viewing ray, ℎ𝑐 is the
altitude of the light source, ℎ𝑜 the altitude of the observer, 𝑢 the
distance from a point on the viewing ray to the viewpoint, 𝜏 the
turbidity, and 𝜆 the wavelength. 𝐿𝑠𝑐 is a function that returns the
intensity of light scattered at point 𝑃 (𝑢) on the viewing ray. In our
current approach, our method cannot consider occlusion by the
terrain as we mentioned in the previous section.

One important feature of our method to be noted here is that our
method does not assume any model for 𝐿𝑠𝑐 ; we can use any model
from analytical to numerical ones. In this paper, we primarily use a
physically-based numerical model, originally developed by Nishita
et al. [1993], that is one of the popular models in computer graphics
for rendering the realistic daytime sky. We utilize a GPU-accelerated
version of the method to render a skyglow image. However, this
method requires two integrals to compute the scattered intensity for
each point on the viewing ray; one is for the optical depth from the
viewpoint and the other for that from the light source. Fortunately,
we can precompute the optical depth from the light source to be
stored in a two-dimensional table. For more details, please refer to
the Appendix A provided as a supplemental document.

The intensity of light reaching the viewpoint is then obtained by
accumulating the intensities of scattered light at the sample points
generated on the viewing ray. However, the contribution of the light
source to the scattered intensity is limited to the region near the
light source. So, we reduce the computational cost of the skyglow
by the following heuristic approach. The intensity of light incident
on a point along the viewing ray from the light source decreases
in proportion to the square of the distance between them. When
we ignore the attenuation caused by the atmospheric particles, the
intensity of the incident light is highest at the point nearest to the
light source. We use this point as the starting point for the integral.
We denote the nearest point by 𝑃 (𝑢𝑐) (see Fig. 2). Then, we split
the integration process into two. One is to accumulate the scattered
intensity for points with 𝑢 > 𝑢𝑐 and the other is for points with
𝑢 ≤ 𝑢𝑐 . We terminate the integration process when the intensity
of the incident light becomes smaller than a specified threshold.
The sampling interval for 𝑢 is important for accurate computation.
We have determined this by trying different sampling intervals. We
find that 10m is a good compromise to balance the accuracy and
the computational cost, which is used for our examples shown in
Section 5.

3.3 Skyglow by Many Light Sources
As we mentioned before, our method takes the density distribu-
tion of light sources as input. Let us denote the distribution as 𝐿𝑐
[𝑊 /𝑚2]. The wavelength 𝜆 is sampled at those corresponding to
RGB color channels and our method is applied to each of the colors
independently. So, we omit 𝜆 for simplicity. Then, the intensity of
the skyglow, 𝐿𝑠 [𝑊 /𝑠𝑟], for a given viewing direction is obtained
by accumulating 𝑏 (Eq.1) over the distribution. Since we use the
polar coordinate with its origin at the observer location, 𝐿𝑠 can be

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

219:4 • Dobashi, Y. et al

expressed by:

𝐿𝑠 (𝜃, 𝜙, ℎ𝑜 , 𝜏) =∫ 𝑅

0

∫ 2𝜋

0
𝐿𝑐 (𝑟𝑐 , 𝜃𝑐)𝑏 (𝜃 − 𝜃𝑐 , 𝜙, 𝑟𝑐 , ℎ𝑐 , ℎ𝑜 , 𝜏)𝑟𝑐𝑑𝜃𝑐𝑑𝑟𝑐 , (3)

where (𝜃, 𝜙) is the viewing direction, (𝑟𝑐 , 𝜃𝑐) and ℎ𝑐 are respectively
the horizontal location and the altitude of the light source. 𝑅 is
the maximum distance from the observer to the light source that
contributes to the skyglow. Note that ℎ𝑐 is a function of (𝑟𝑐 , 𝜃𝑐),
though we do not explicitly indicate it in the above equation.
Our goal is the fast computation of the above equation, given

the distribution of the light sources (𝐿𝑐) and the turbidity of the
atmosphere (𝜏). This computation includes triple integrals since 𝑏 is
computed by accumulating the scattered intensity along the viewing
ray (see Eq.1). Thus, we must compute the triple integrals for every
viewing direction (𝜃, 𝜙), which is extremely time-consuming.

Let us now explain our formulation for the fast computation of
Eq. 3. Our method is independent of the turbidity, so we omit 𝜏
in the following formulation for the simplicity of the explanation.
We first apply PCA to 𝑏 to obtain the basis functions, denoted by
𝐵𝑘 (𝑘 = 0, 1, · · · , 𝑀 − 1). The number of the basis functions, 𝑀 , is
determined so that the cumulative contribution rate is larger than
a user-specified threshold. Then, 𝑏 is represented by the following
equation.

𝑏 (𝜃, 𝜙, 𝑟, ℎ𝑐 , ℎ𝑜) ≈
𝑀−1∑︁
𝑘=0

𝑐𝑘 (𝑟, ℎ𝑐 , ℎ𝑜)𝐵𝑘 (𝜃, 𝜙, ℎ𝑜), (4)

where 𝑐𝑘 is the coefficient for the basis functions. 𝑐𝑘 is obtained by
computing the dot product between 𝑏 and 𝐵𝑘 . By putting the above
equation into Eq. 3, we obtain:

𝐿𝑠 (𝜃, 𝜙, ℎ𝑜) =
𝑀−1∑︁
𝑘=0

𝐿𝑘 (𝜃, 𝜙, ℎ𝑜), (5)

where,

𝐿𝑘 (𝜃, 𝜙, ℎ𝑜) =∫ 𝑅

0

∫ 2𝜋

0
𝐿𝑐 (𝑟𝑐 , 𝜃𝑐)𝑐𝑘 (𝑟𝑐 , ℎ𝑐 , ℎ𝑜)𝐵𝑘 (𝜃 − 𝜃𝑐 , 𝜙, ℎ𝑜)𝑟𝑐𝑑𝜃𝑐𝑑𝑟𝑐 . (6)

𝐿𝑘 represents the basis distribution of the skyglow. Since 𝐵𝑘 does
not depend on 𝑟𝑐 , we can further rewrite the above equation as:

𝐿𝑘 (𝜃, 𝜙, ℎ𝑜) =
∫ 2𝜋

0
𝐻𝑘 (𝜃𝑐 , ℎ𝑜)𝐵𝑘 (𝜃 − 𝜃𝑐 , 𝜙, ℎ𝑜)𝑑𝜃𝑐 , (7)

where,

𝐻𝑘 (𝜃𝑐 , ℎ𝑜) =
∫ 𝑅

0
𝐿𝑐 (𝑟𝑐 , 𝜃𝑐)𝑐𝑘 (𝑟𝑐 , ℎ𝑐 , ℎ𝑜)𝑟𝑐𝑑𝑟𝑐 . (8)

Note that 𝐻𝑘 is a function of 𝜃𝑐 and ℎ𝑜 only, since ℎ𝑐 is a function
of (𝑟𝑐 , 𝜃𝑐). Since 𝐻𝑘 and 𝐵𝑘 are both periodic functions with respect
to the azimuth angles (𝜃 and 𝜃𝑐), Eq. 7 indicates that 𝐿𝑘 is obtained
by the convolution of 𝐻𝑘 and 𝐵𝑘 , which can be computed very
efficiently using a Fast Fourier Transform (FFT), that is,

𝐿𝑘 (𝜃, 𝜙, ℎ𝑜) = F −1𝜃

[
F𝜃 [𝐻𝑘] × F𝜃 [𝐵𝑘]

]
(𝜃, 𝜙, ℎ𝑜), (9)

where F𝜃 [·] and F −1𝜃
[·] represent the FFT and the inverse FFT

operators with respect to the azimuth angle 𝜃 . We precompute 𝑐𝑘

and F𝜃 [𝐵𝑘], and use Eq. 9 for fast computation at runtime. Note that
we need to repeat the precomputation when the observer altitude
(ℎ𝑜) changes. We thus sample the observer altitude at a regular
interval and precompute 𝑐𝑘 and F𝜃 [𝐵𝑘] for each of the sampled
values (see Section 3.4). The precomputation could become long,
but we emphasize that the precomputed data is independent of the
terrain geometry and can be used for any terrain data.

Although the above approach based on basis function expansion
is popular in the graphics community, no methods are suitable for
the situation treated in this paper. The acceleration by our method
comes from not only the basis function expansion but also the
careful derivation of the formulation. At high level, PCA removes
the redundancy among the skyglow distributions using different city
light sources. This is responsible for reducing the storage cost but
not for acceleration. One of the important keys to the acceleration
in our method lies in Eqs. 6 through 8. The naive method needs
to evaluate Eqs. 1 and 3, so it requires a triple integral for each
viewing ray. Our method requires a single integral (Eq. 8) for each
azimuth direction 𝜃𝑐 to sample the density distribution of light
sources to compute 𝐻𝑘 , followed by FFT convolution (Eq. 9). This is
achieved by decoupling𝑏 (𝜃, 𝜙, 𝑟, ℎ𝑐 , ℎ𝑜) into the product of functions
of (𝑟, ℎ𝑐 , ℎ𝑜) and (𝜃, 𝜙, ℎ𝑜) as in Eq. 4. This seems a simple and
straightforward formulation, but we have tried different approaches
before reaching the current solution that makes the computation
simplest and most efficient. This approach could be extended to
similar rendering problems, such as rendering participating media
illuminated by many light sources.
The computational cost and the accuracy of our method for the

skyglow are discussed in Appendix B in the supplemental document.
We have a trade-off between these factors and the discussion should
help the user to balance them.

3.4 Implementation
We discretize (𝜃, 𝜙, 𝑟, ℎ𝑐 , ℎ𝑜) at regular intervals, denoted by (Δ𝜃 ,
Δ𝜙 ,Δ𝑟 ,Δℎ𝑐 ,Δℎ𝑜), respectively. The density distribution of light
sources 𝐿𝑐 (𝑟𝑐 , 𝜃𝑐) is also represented with the same discretization.
Let us denote the indices of the discretized values of these variables
by (𝑖𝜃 , 𝑖𝜙 , 𝑖𝑟 , 𝑖ℎ𝑐 , 𝑖ℎ𝑜), where 0 ≤ 𝑖𝜃 < 𝑁𝜃 , 0 ≤ 𝑖𝜙 < 𝑁𝜙 , 0 ≤ 𝑖𝑟 < 𝑁𝑟 ,
0 ≤ 𝑖ℎ𝑐 < 𝑁ℎ𝑐 , and 0 ≤ 𝑖ℎ𝑜 < 𝑁ℎ𝑜 . The turbidity of the atmosphere,
𝜏 , is also discretized at a regular interval, and the related data is pre-
computed for each of the sampled turbidity values. When using our
system, the user selects one of the sampled turbidity values. While
it is possible to interpolate the precomputed data across various
turbidity values, our current implementation does not employ this
approach.

We apply the computation process illustrated by Fig. 3 to each of
the sampled values of the observer altitude. We precompute two 3D
textures for each sampled observer altitude to store the basis images
and the coefficients for the use on the GPU at runtime process.
Therefore, in total, we use 𝑁ℎ𝑜 × 2 textures. When the user specifies
the observer location at runtime, the skyglow is rendered by using
the precomputed textures corresponding to the observer altitude.

In the following explanation of the precomputation and the run-
time processes, we do not explicitly denote the dependence of the
observer altitude.

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

Efficient Visualization of Light Pollution for the Night Sky • 219:5

ℱ𝜃𝜃

ℱ𝜃𝜃 ℱ𝜃𝜃−1

preprocess

runtime process

PCA

𝑇𝑇𝑐𝑐 𝑇𝑇 �𝐵𝐵

𝑇𝑇�𝐻𝐻 ∗

skyglow images 𝑏𝑏 coefficients 𝑐𝑐𝑘𝑘 basis images 𝐵𝐵𝑘𝑘 FFT of 𝐵𝐵𝑘𝑘

city light + altitude

𝑇𝑇𝑠𝑠

𝐿𝐿𝑐𝑐 ℎ𝑐𝑐
city light × coefficient

𝐻𝐻𝑘𝑘
FFT of 𝐻𝐻𝑘𝑘

convolution

ℱ𝜃𝜃

ℱ𝜃𝜃 ℱ𝜃𝜃−1

preprocess runtime process

PCA

∗

𝑇𝑇 �𝐵𝐵

FFT of 𝐵𝐵𝑘𝑘

𝑇𝑇𝑠𝑠
𝐿𝐿𝑐𝑐 ℎ𝑐𝑐 city light × coefficient𝐻𝐻𝑘𝑘

𝑇𝑇�𝐻𝐻
FFT of 𝐻𝐻𝑘𝑘

convolution
×

skyglow images 𝑏𝑏

𝑇𝑇𝑐𝑐

coefficients 𝑐𝑐𝑘𝑘 basis images 𝐵𝐵𝑘𝑘
pr

ep
ro

ce
ss

ru
nt

im
e

altitudecity light

Fig. 3. Implementation details.

3.4.1 Precomputation. In the precomputation, we first render a set
of images of the skyglow, 𝑏, using Eq. 1 for different discrete values
of (𝑟, ℎ𝑐) = (𝑖𝑟Δ𝑟 , 𝑖ℎ𝑐Δℎ𝑐). Next, PCA is applied to the rendered
images to compute the images of the basis functions, 𝐵𝑘 (𝜃, 𝜙) (𝑘 =

0, 1, · · · , 𝑀 − 1). We use the Eigen library [Guennebaud et al. 2010]
for the PCA computation. The rendered images are projected onto
the basis space to obtain the coefficients 𝑐𝑘 (𝑟, ℎ𝑐 , ℎ𝑜). Next, the FFT
operator F𝜃 is applied to the basis images. These computations take
from several minutes to a few hours depending on the resolution of
the discretization.

As shown in Fig. 3, we denote the texture for the Fourier-transformed
basis images as 𝑇

�̂�
with the size of 𝑁𝜃 × 𝑁𝜙 × 𝑀 . Each texel at

(𝑖𝜃 , 𝑖𝜙 , 𝑘) corresponds to 𝐵𝑘 (𝑖𝜃Δ𝜃 , 𝑖𝜙Δ𝜙). The texture for the coeffi-
cients are denoted by𝑇𝑐 of size𝑁𝑟×𝑁ℎ𝑐×𝑀 that stores 𝑐𝑘 (𝑖𝑟Δ𝑟 , 𝑖ℎ𝑐Δℎ𝑐)
at (𝑖𝑟 , 𝑖ℎ, 𝑘) texel.

3.4.2 Runtime Process. The runtime process first extracts a terrain
map including the density distribution of the city light sources
around the observer from a given database. Usually, the distribution
is given with the Cartesian coordinate, so our system converts it into
the polar coordinate with the observer at the origin. The converted
distribution is stored in the form of a 2D texture denoted by 𝑇𝑠
of size 𝑁𝜃 × 𝑁𝑟 . Each texel (𝑖𝜃 , 𝑖𝑟) stores the light flux 𝐿𝑐 and the
altitude ℎ𝑐 at (𝑖𝑟Δ𝑟 , 𝑖𝜃Δ𝜃).

Next, 𝐻𝑘 (𝜃𝑐) is computed according to Eq. 8. The computation is
done in parallel on the GPU. To compute𝐻𝑘 , we need to accumulate
the light flux 𝐿𝑐 multiplied with coefficient 𝑐𝑘 along the distance 𝑟𝑐 .
We first fetch the light flux 𝐿𝑐 and the altitudeℎ𝑐 at (𝑖𝜃Δ𝜃 , 𝑖𝑟Δ𝑟) from
𝑇𝑠 . Next, the coefficient 𝑐𝑘 (𝑟𝑐 , ℎ𝑐) is extracted from texture𝑇𝑐 . These
texel values are multiplied and accumulated to obtain𝐻𝑘 (𝑖𝜃Δ𝜃). FFT
operator F𝜃 is applied to the resulting texture, denoted by𝑇

�̂�
whose

size is 𝑁𝜃 ×𝑀 .
The convolution in the frequency space, F𝜃 [𝐻𝑘] × F𝜃 [𝐵𝑘] is

also computed on the GPU. Both of the Fourier transforms of 𝐻𝑘

and 𝐵𝑘 are already on the GPU memory as textures 𝑇
�̂�

and 𝑇
�̂�
,

so we simply multiply the corresponding texels in parallel. The
inverse FFT operator F −1

𝜃
is then applied to obtain the final image,

representing the distribution of the skyglow. Both of F𝜃 and F −1
𝜃

are also computed on the GPU.

4 INVERSE INVESTIGATION
This section proposes our interactive investigation tools. That is,
inversely to the forward rendering method described in the previous
section, the method proposed in this section can efficiently identify
the city light sources that affect the light pollution or the skyglow
observed at a specified location. The results are visualized in real-
time. The user can then adjust the intensity of those city light sources
so that the light pollution or the skyglow is weakened to the desired
level. The method is based on the PCA-based representation of
the skyglow explained in the previous section. We have developed
two types of tools. The first one considers the level of the light
pollution at a specified location on the terrain (Section 4.1). The
second one is for the skyglow intensity observed at a specified
location (Section 4.2).
In the following, we assume that the terrain is represented with

a regular grid and the location of the center of 𝑖-th grid cell is
represented with its horizontal location p𝑖 and altitude ℎ𝑖 . The light
flux of the city light located at 𝑖-th grid cell is denoted by 𝐿𝑐,𝑖 .

4.1 Inverse Investigation of Light Pollution
We estimate the level of the light pollution with the squared sum of
the skyglow intensities over the whole sky, which can be computed
approximately by the sum of the PCA coefficients, 𝑐𝑘 (see Eq. 4).
That is, the light pollution level due to a light source with unit area
and unit light flux is estimated by:

𝑄 (𝑟, ℎ𝑐 , ℎ𝑜) =

√√√𝑀−1∑︁
𝑘=0

𝑐2
𝑘
(𝑟, ℎ𝑐 , ℎ𝑜), (10)

where 𝑟 is the distance from the observer. ℎ𝑐 and ℎ𝑜 are respectively
the altitudes of the light source and the observer. Let us now as-
sume that the observer is located at p𝑜 (its altitude is ℎ𝑜). The light
pollution level, 𝑄𝑖 [𝑊], due to a light source located at 𝑖-th grid cell
is then expressed by:

𝑄𝑖 = 𝐿𝑐,𝑖𝑄 (|p𝑜 − p𝑖 |, ℎ𝑖 , ℎ𝑜), (11)

where 𝐿𝑐,𝑖 is the light flux of the light source. Eq. 11 indicates the
degree of the light pollution caused by 𝑖-th light source. Our system
visualizes this quantity with a pseudo color for all the light sources
on the terrain map, as shown in Fig. 4. We use the GPU for real-
time visualization. 𝑄 (𝑟, ℎ𝑐 , ℎ𝑜) is precomputed and used as a two

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

219:6 • Dobashi, Y. et al

city light

observer

city light causing
light pollution

observer

Fig. 4. Inverse visualization of light pollution. The left is a normal view
showing a terrain map with city light distribution overlaid. The right image
shows the influence of the light sources on the light pollution at the observer
location.

observer

city light causing
skyglow

user specified region

Fig. 5. Inverse visualization of skyglow. The left image shows the influence
of the light sources on the skyglow indicated by the red curve specified by
the user shown in the right image.

dimensional texture. Then, Eq. 11 is computed in parallel on the GPU.
The user can move the observer location interactively to investigate
the influences of the surrounding light sources on the light pollution
at the observer.
Our system allows the user to reduce the city light intensity to

investigate how city light affects the light pollution. We employ the
following strategy. We first calculate the reduction rate 𝛾𝑖 for each
of the light sources with the following equation:

𝛾𝑖 =
𝑄𝑖 −𝑄𝑎

𝑄𝑏 −𝑄𝑎
𝛾𝑢𝑠𝑟 , (12)

where 𝑄𝑎 , 𝑄𝑏 , and 𝛾𝑢𝑠𝑟 are specified by the user. Note that both 𝛾𝑖
and 𝛾𝑢𝑠𝑟 are limited to a value between 0 and 1. Then, the intensity
of the light source is reduced by: 𝐿𝑐,𝑖 ← 𝐿𝑐,𝑖 − 𝛾𝑖𝐿𝑐,𝑖 . This strategy
is based on a policy that the reduction rate should be proportional
to the level of the light pollution; the rate for the light source with
high influence is larger than that with low influence. 𝑄𝑎 and 𝑄𝑏

control the allowable range of the light pollution caused by each
light source. When 𝛾𝑢𝑠𝑟 is one, the light sources with 𝑄𝑖 > 𝑄𝑏 are
eliminated. The light sources with 𝑄𝑖 < 𝑄𝑎 are on the other hand
unchanged with any value of 𝛾𝑢𝑠𝑟 .

4.2 Inverse Investigation of Skyglow
The method proposed in this section allows the user to identify the
light sources that affect the skyglow displayed on the screen. The
user can specify the region on the sky dome by drawing a closed

curve (see Fig. 5). The system then computes the influence of the
surrounding light sources on the skyglow inside the closed curve.
Let us denote the set of viewing directions for points inside the

curve by (𝜃𝑙 , 𝜙𝑙) (𝑙 = 0, 1, · · · , 𝑁𝑑), where 𝑁𝑑 is the number of the di-
rections. The contribution of light source at 𝑖-th grid cell to direction
(𝜃𝑙 , 𝜙𝑙) can be computed by:

𝑠𝑖 (𝜃𝑙 , 𝜙𝑙) = 𝐿𝑐,𝑖𝑏 (𝜃𝑙 − 𝜃𝑖 , 𝜙𝑙 , 𝑟𝑖 , ℎ𝑖 , ℎ𝑜), (13)

where 𝜃𝑖 is the azimuth direction of the light source viewed from
the observer. 𝑟𝑖 is the distance from the observer to the light source,
and ℎ𝑖 is its altitude. 𝑠𝑖 can be computed by using the PCA basis
functions (see Eq. 4). The influence of 𝑖-th light source on the region
inside the curve is measured by the following equation:

𝑆𝑖 =
∑︁
𝑙

𝑠𝑖 (𝜃𝑙 , 𝜙𝑙) (14)

Our system visualizes 𝑆𝑖 with a pseudo color, as shown in Fig. 5. We
again use the GPU for real-time visualization.
In the similar way to Section 4.1, we allow the user to weaken

the skyglow by reducing the intensities of the surrounding light
sources. We employ the same strategy as the one described in the
last paragraph of Section 4.1, but we use 𝑆𝑖 instead of 𝑄𝑖 .

5 RESULTS
In this section, we demonstrate the effectiveness of our method
and show some application results. For the results shown in this
section, we use a desktop PC with an Intel Core i9 3.00 GHz (CPU)
and an NVIDIA Quadro RTX 6000 (GPU). The memory capacities
of the CPU and the GPU are 128 GB and 24 GB, respectively. We
use a virtual terrain model for the following example. The size of
the terrain is 10km×10km×1.0km. For the discretization, we choose
the following settings: 𝑁𝜃 = 256, 𝑁𝜙 = 64, 𝑁𝑟 = 128, 𝑁ℎ𝑠 = 16,
and 𝑁ℎ𝑜 = 16. The sampling intervals are :Δ𝜃 = 2𝜋/256 radian,
Δ𝜙 = 𝜋/128 radian, Δ𝑟 = 78.125 m, and Δℎ𝑠 = Δℎ𝑜 = 62.5 m. The
precomputation took about 4 - 6 hours for each sampled turbidity.
The time changes depending on the number of basis functions. Note
that this precomputation data can be used for any terrain data as
long as the size is the same. For the runtime process, we render a
panorama image of the skyglow corresponding to the upper half
of the sky and use it as an environment map. The resolution of the
map is 𝑁𝜃 × 𝑁𝜙 = 256 × 64. Using this resolution, the size of each
pixel corresponds to 1.4 degrees. The following examples use the
precomputed data for a small turbidity value, 1.3, that corresponds
to a clear sky. Comparison of images with different turbidity values
can be found in the supplemental document (Appendix C). We use
a star map (Deep Star Maps 2020) for rendering the stars, which has
been made publicly available by NASA.1.

5.1 Performance Evaluation
We investigate the efficiency and the accuracy of our method. We
measured the computation times for the runtime process (the second
row of Fig. 3) and the average relative errors to reference solutions.
The results are shown in Figs. 6 and 7. In these experiments, the

1NASA/Goddard Space Flight Center Scientific Visualization Studio. Gaia DR2:
ESA/Gaia/DPAC. Constellation figures based on those developed for the IAU by Alan
MacRobert of Sky and Telescope magazine (Roger Sinnott and Rick Fienberg).

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

Efficient Visualization of Light Pollution for the Night Sky • 219:7

0.0E+00
4.0E-01
8.0E-01
1.2E+00
1.6E+00
2.0E+00
2.4E+00

0 500 1000 1500 2000

ti
me
 [

s]

number of lighting cells

0%

1%

2%

3%

4%

5%

8 16 32 64 128 256

re
la

ti
ve
 e

rr
or

number of basis functions

128 256
512 1024
2048

1.5E-03

2.0E-03

2.5E-03

3.0E-03

0 64 128 192 256

ti
me
 [

s]

number of basis functions
(b) computation time and number of basis functions.

naive method

our method with
128 basis

(a) computation time and number of lighting cells.

(c) average relative error and number of basis functions.

Fig. 6. Computation time and accuracy.

reference solutions are calculated by a naive method that directly
integrates the scattered intensity (Eq. 3). For the reference solution,
only cells with a positive density of light sources are taken into
consideration. We refer to them as "lighting cells" in the following.
Note that the details of the measured timing and errors can be found
in the supplemental document (Appendix D).
Fig. 6(a) shows the computation times of our method and the

naive method. For our method, we use 128 basis functions. We
measured the computation times for different numbers of lighting
cells, that is, 1, 2, 4, · · · , 2048. The locations and the light fluxes of the
lighting cells are randomly determined. We computed the skyglow
images a hundred times and Fig. 6(a) shows the average of them. As
indicated by the figure, the computation time of the naive method is
linearly proportional to the number of the lighting cells. The figure
also demonstrates that our method is almost independent of the
number of the lighting cells. As the number increases, our method
becomes efficient by a factor of one to two orders of magnitudes. In

(a) naive method.

(b) our method with 32 basis functions.

(c) relative error.
0%

10%

g=4.0010.jpg

Fig. 7. Comparison of skyglow images with and without our method for
1,024 lighting cells.

the case of 2,048 lighting cells, our method achieves 910 times faster
computation. This property is preferable for visualizing the light
pollution since we must consider many city light sources.
Next, Fig. 6(b) shows the computation times for the runtime

process of our method with different numbers of basis functions,
that is, 8, 16, · · · , 256. The number of the lighting cells is fixed at 2,048.
The time increases linearly when the number of the basis functions
is greater than 64. When the number is smaller, the relationship
between the time and the number of the basis functions seems
nonlinear. We have not investigated the reason, but we assume that
we cannot fully exploit the parallel computation power of the GPU
for such a smaller number of basis functions. However, even for
256 basis functions, the computation time is less than 3ms which is
sufficient for real-time visualization.
Fig. 6(c) shows the average relative errors of our method with

different numbers of basis functions and the lighting cells. We mea-
sured the errors for 128, 256, 512, 1024, and 2048 lighting cells; each
plot in this figure corresponds to each of these. The horizontal axis
corresponds to the number of basis functions. For all the cases, the
error is less than 5%.
Finally, Fig. 7 compares panorama images of the skyglow with

and without using our method. Figs. 7(a) and (b) were respectively
generated by the naive method and our method. Our method uses
32 basis functions. The storage size for the precomputed data in this
case is 108 MB. The original storage size of the skyglow distribu-
tions is 2,048 MB. The storage size is thus reduced to 1/19 by our
method. Fig. 7(c) shows the relative error between them. Although
the relative error is high in the upper region, the intensity of the
skyglow there is small as shown in Figs. 7(a) and (b).

5.2 Applications
We developed a simple interactive visualization system using our
method. Although we use a white color for the light source, the color
of the skyglow becomes bluish due to the atmospheric scattering.
The user can optionally change the color of the light sources.

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

219:8 • Dobashi, Y. et al

terrain map light pollution

city light

observer

(a) default appearance of our system.

(b) realistic display. (c) view from the observer.

terrain map light pollution

city light

observer

(a) default appearance of our system.

(b) realistic display. (c) view from the observer.

Fig. 8. Our light pollution visualization system.

(a) light pollution for the observer near the city.

observer

(b) light pollution for the observer far from the city.

(c) light pollution after generating new city lights.

observer

observer
paintedpainted

(a) light pollution for the observer near the city.

observer

(b) light pollution for the observer far from the city.

(c) light pollution after generating new city lights.

observer

observer
paintedpainted

Fig. 9. Forward investigation.

Fig. 8(a) shows the appearance of our system. On the left, the
terrain is displayed with a pseudo-color representing the altitude of
every location. The city light distribution is overlaid with the color
of the light. The user can interactively specify the location of the
observer from which she/he wants to visualize the light pollution.
The location of the observer is displayed with a small red dot. The
light pollution is visualized in real-time on the right with a pseudo-
color representing the intensity of the skyglow. A realistic display of
the light pollution is also possible with the stars overlayed as shown
in Fig. 8(b). The user can also switch to the perspective visualization
of the sky viewed from the observer location as shown in Fig. 8(c).
Our system can be used for different purposes in the context of light
pollution. The following examples demonstrate some application
cases of our system.

Fig. 10. Effects of the color of light sources on the skyglow.

A direct application of our system is astronomical observation.
Astronomers can use the system to find a dark place for a better
observatory location. Fig. 9 shows such an example. The user can
explore different places interactively to find a suitable place for the
observation. Figs. 9(a) and (b) show visualization results for two
observer locations. For the location near the city as in Fig. 9(a), the
sky is severely polluted, so this is not a good place. The location far
from the city shown in Fig. 9(b) is better since the light pollution
is reduced. Next, in Fig. 9(c), the user investigates how the light
pollution increases when new city light sources are generated. Our
system allows the user to increase/decrease the intensity of the
city light with a painting operation. This function is useful for city
planning. We would like to additionally mention that the system
can be helpful not only to find better places for fixed observatories,
but also for ’on purpose’ observations where one can travel to see an
object optimally. As an example, a comet that appears in a particular
azimuth direction can be observed optimally if one finds a dark sky
in that direction.
Next, our system is useful for the city light planning as well.

In Fig. 10, the user investigates the influence of the color of light
sources on the skyglow. Our system allows the user to choose an
arbitrary color for the light sources and the images are rendered in
real-time. In this example, four different colors, white, orange, pink,
and blue, are chosen but the luminance is the same for all these
colors. We see the appearance of the nigh sky changes depending
on the color of the light sources. This function allows the city light
planners to choose appropriate spectral distribution of the light
sources to minimize the influence of light pollution on the visual
quality of the night sky.

Fig. 11 shows another application case for the city light planners
using our inverse tools. The city light planners can benefit from the
tools to optimize and design lighting layouts, such as streetlamps,
to minimize light pollution and enhance the overall quality of urban
lighting. Fig. 11(a) shows a location with severe light pollution. The
left shows the light sources causing the light pollution with the
pseudo color. The right image shows a panorama view from that
location. In Fig. 11(b), the user reduces the intensity of the light
sources by using our method described in Section 4.1. However, the
annoying skyglow is still visible as shown in the right image. In
Fig 11(c), the user specifies the region of the annoying skyglow with
the red curve. Then the system displays the light sources causing
the skyglow with the pseudo color as shown in the left image. In
Fig. 11(d), the user reduces the intensities of those light sources and
the skyglow is reduced.

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

Efficient Visualization of Light Pollution for the Night Sky • 219:9

(a) a location with severe light pollution.

(b) light sources with large influences are weakened.

(c) light sources with large influence on the skyglow.

(d) the skyglow is fairly reduced.

observer

observer

observer

observer

(a) a location with severe light pollution.

(b) light sources with large influences are weakened.

(c) light sources with large influence on the skyglow.

(d) the skyglow is fairly reduced.

observer

observer

observer

observer

Fig. 11. Inverse investigation.

All the images shown in this section are displayed in real-time
according to the user’s operation. Please refer to the supplemental
video for the demonstration of our system working in real-time.

5.3 Experiments with Multiple Scattering
We have so far used the single scattering model to evaluate our
method. However, our method is not limited to specific scattering
models and can actuallyworkwithmore advanced ones. This section
demonstrates this by presenting experiments involving multiple
scattering.
We utilize the physically-based path tracer, mitsuba3, to com-

pute the multiple scattering for the skyglow [Jakob et al. 2022].
Our preprocess then starts by computing a set of skyglow images
using this path tracer. Due to the computationally expensive na-
ture of multiple scattering, we reduced the discretization setting
for (𝑁𝑟 , 𝑁ℎ𝑠 , 𝑁ℎ𝑜) to (32, 16, 16), resulting in the precomputation
of 8,192 images. Without this adjustment, the precomputation time
would become impractically long. We rendered images with 4,096
samples per pixel; however the images still exhibited noise. To ad-
dress this, we applied a Gaussian blur filter with the kernel size
of five pixels. PCA is subsequently applied to compute the basis
images. The precomputation took 34 hours, mostly spent on the
computation of the skyglow images using the path tracer, while
PCA took only 44 minutes. After the precomputation, our method
can render the skyglow in real-time and the rendering speed is the
same as that shown in the previous section.
Fig. 12 shows comparisons between the panorama images ren-

dered using our method and those generated by the path tracer. We
selected three observer locations, (a), (b), and (c), for these com-
parisons, as indicated in the left most image. The images in the

0

10%

a
b
c

(a) (b) (c)

彩度を４0%に！

0

255

a
b
c

(a) (b) (c)

Fig. 12. Skyglow images with multiple scattering. The leftmost image shows
the three locations (a), (b), and (c), respectively for computing the skyglow
images on the right. The images in the top row are generated by our method.
The second row shows the reference images computed by Mitsuba3. The
bottom row shows the difference images presented with the pseudo color
scheme.

0

20%

(a) (b) (c)

彩度を４0%に！

0

255

(a) (b) (c)

Fig. 13. Skyglow images as viewed from the three observer locations. The
images in the top row are generated by our method. The second row shows
the reference images computed by Mitsuba3. The bottom row shows the
relative error presented with the pseudo color scheme.

top and second rows were respectively generated by our method
and the path tracer. The bottom images show the relative errors
presented using a pseudo color scheme. We use 32 basis functions
for our method. Note that the occlusion by the terrain is not taken
into account in these comparisons. Since the images by the path
tracer exhibited severe noise even with 4,096 samples per pixel,
we rendered each image four times and computed an average of
them. The Gaussian filter was then applied to the result. Although
the noise cannot be completely removed, we can confirm that our
method produces accurate images as shown in the error images. The
path tracer took 130 seconds on average to create a single image.
Our method achieves more than 104 faster computation for these
particular examples.
Fig. 13 shows a comparison of images as observed from the

viewer’s perspective. The observer locations for (a), (b), and (c)
are the same as those in Fig. 12. In this comparison, however, the
images generated by the path tracer consider the occlusion caused
by the terrain, while our method does not account for it. While the
rendered images appear similar as shown in the top and second
rows, there are noticeable relative errors near the horizon as shown
in the bottom row. This is one of the limitations of our method; we
discuss possible solutions to this problem in Section 6.

Next, we further investigate the capability of our method through
an additional experiment similar to Fig. 7, but this time taking into
account the multiple scattering in the computation of the skyglow.

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

219:10 • Dobashi, Y. et al

0%

2%

4%

6%

8%

10%

12%

8 16 32 64 128 256

re
la

ti
ve
 e

rr
or

number of basis functions

128 256 512

1024 2048

0%

5%

10%

15%

20%

25%

30%

1 2 4 8 16 32 64 128 256

re
la

ti
ve

 e
rr

or

number of basis functions

Fig. 14. Average relative error and number of basis functions for skyglow
computed with multiple scattering.

We assume a flat ground and generate light sources randomly. We
compute panorama images of the skyglow with different number
of basis functions and compare them with the reference image
computed by the path tracer. The results are summarized in Fig. 14,
demonstrating that our method is accurate when utilizing more
than 32 basis functions. Note that the average relative error with
8 basis functions was accidentally smaller than that with 16 basis
functions, but severe artifacts appeared in the skyglow image due
to the small number of the basis functions.

6 DISCUSSION
While the examples in the previous section focused on the inves-
tigation of light pollution, it is worth noting that our method can
offer several applications in the context of light pollution. A good
example is a flight simulator. Given the rapid rendering capabilities
of our method, it can be seamlessly integrated with real-time flight
simulators, which enables a visual assessment of how city lights
impact flights. In addition to such a practical application, we could
use our system for a more artistic purpose; we could use our system
to design the appearance of the night sky. For example, we can
extend the method in Section 4.2 to inversely determine the color
distribution of light sources to allow the user to paint the sky with
arbitrary colors. Another practical application is the design of lens
filters for capturing the beauty of starry photographs. Common city
lighting fixtures emit light with characteristic spectral distributions.
Filters that selectively block light within specific spectral bands are
often utilized for photographers of the night sky. Our system can
be used for evaluating their performance during the design process.
However, in our current implementation, we can compute the sky-
glow for three color channels (RGB) only. The computation could
become excessive when we consider more spectral bands. We may
be able to reduce the computational cost by projecting the spectral
distribution of the light sources onto some basis functions [Peercy
1993].

One limitation of our method is that it does not account for light
occlusion caused by terrain. An approximate solution to this limi-
tation involves multiplying the ratio of the occluded region to the
entire sky. However, precise solutions for this issue remain a subject
of our future research. We may draw insights from the existing lit-
erature on precomputed radiance transfer methods [Ramamoorthi
2009].

Another limitation is the long precomputation time, particularly
when using fine sampling intervals for the distance and the altitude.

When considering the single scattering only, PCA consumes a sig-
nificant portion of the time. To address this problem, we plan to use
faster methods like power iteration. However, when considering
multiple scattering, the computation time for rendering skyglow
images also increases significantly. We can speed up this computa-
tion by taking advantage of the fact that the skyglow distribution
is symmetric around the light source. However, this is part of our
future research.

One might think that we could use common basis functions like
spherical harmonics or wavelets. Then PCA process would be no
longer needed. However, we found that PCA offers more accurate
representations of skyglow. Since the skyglow due to a single light
source has a sharp peak around the light source, the spherical har-
monics fails to approximate it accurately. Similarly, for the wavelets,
we experimented with Haar wavelets, but encountered blockwise
artifacts appeared unless we used a large number of basis functions.
In contrast, PCA resolved all these problems since PCA provides
better basis functions that are well-suitable for the given dataset.
Additionally, we would like to emphasize that our PCA basis func-
tions are not terrain-dependent and can be applied to any terrain
map. Although PCA takes longer for precomputation, the benefits
it offers outweigh this drawback.
An important research direction is using our system to design

the city lighting devices, such as streetlamps. In this context, three
factors need to be considered: brightness, light distribution curve,
and spectral distribution. These factors collectively influence the ap-
pearance of the night sky. Although we have already demonstrated
examples for the influence of the brightness and the spectral distri-
bution (color) of light sources in Section 5.2, the light distribution
curves are not considered. We would like to extend our method to
the light distribution curves in the future.

Another interesting research direction is the detailed modeling of
the city light sources. Currently, each city light is approximated with
a distribution of light sources. Although we can analyze the overall
property of the light pollutionwith this approximation, in reality city
lights are much more complicated, containing potentially millions
of different lighting devices. Modeling of a realistic distribution
considering individual lighting devices in the city is an interesting
future problem.

7 CONCLUSIONS
We have proposed and implemented a fast visualization method
for the night sky considering the light pollution. Our method pre-
computes the skyglow distributions illuminated by an infinitesimal
area light located at different locations. The precomputed distri-
butions are then projected onto the PCA basis functions, followed
by the FFT operator. This allows us to efficiently compute the in-
tensity of the skyglow illuminated by many city light sources. The
inverse investigation method has also been proposed based on our
fast computation method of the skyglow. We have developed an
interactive system based on our method that visualizes the light
pollution in real-time for arbitrary observer locations. The user can
also add/delete the city light sources interactively.

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

Efficient Visualization of Light Pollution for the Night Sky • 219:11

As for the future work, we are planning to use a public database
[Elvidge et al. 2021] for the distribution of the city light sources2.
This database stores the average light flux of night cities measured
by satellites over the world. By combining this database and an
open mapping platform (like Google map), we wish to develop a
web service that visualizes the light pollution at any location on the
Earth.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their constructive
comments to improve our paper. We also thank Dr. Fabio Falchi, Dr.
Miroslav Kocifaj, and Dr. Nobuaki Ochi for their helpful discussion
on the application of our method to light pollution research. This
work was supported by JSPS KAKENHI Grant Numbers JP20H05954
and JP21H03571.

REFERENCES
Ryan Avery, Stanley Yu, Kenton Ross, Veronica Warda, and Steven Chao. 2017. Skyglow

Estimation Toolbox — SET 0.0.1 Documentation. https://nasa-develop.github.io/SET/
Salvador Bará, Fabio Falchi, Riccardo Furgoni, and Raul C. Lima. 2020. Fast Fourier-

transform calculation of artificial night sky brightness maps. Journal of Quantitative
Spectroscopy and Radiative Transfer 240 (2020), 106658. https://doi.org/10.1016/j.
jqsrt.2019.106658

Salvador Bará, Salvador J Ribas, and Miroslav Kocifaj. 2015. Modal evaluation of the
anthropogenic night sky brightness at arbitrary distances from a light source. Journal
of Optics 17, 10 (aug 2015), 105607. https://doi.org/10.1088/2040-8978/17/10/105607

Eric Bruneton and Fabrice Neyret. 2008. Precomputed Atmospheric Scattering. Com-
puter Graphics Forum 27, 4 (2008), 1079–1086. https://doi.org/10.1111/j.1467-
8659.2008.01245.x

P. Cinzano and F. Falchi. 2012. The propagation of light pollution in the
atmosphere. Monthly Notices of the Royal Astronomical Society 427,
4 (2012), 3337–3357. https://doi.org/10.1111/j.1365-2966.2012.21884.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2966.2012.21884.x

Yoshinori Dobashi, Tomoyuki Nishita, and Tsuyoshi Yamamoto. 2002. Interactive
rendering of atmospheric scattering effects using graphics hardware. In Proceedings
of Graphics Hardware. 99 – 108.

Christopher D. Elvidge, Mikhail Zhizhin, Tilottama Ghosh, Feng-Chi Hsu, and Jay
Taneja. 2021. Annual Time Series of Global VIIRS Nighttime Lights Derived from
Monthly Averages: 2012 to 2019. Remote Sensing 13, 5 (2021), 922. Issue 5. https:
//doi.org/10.3390/rs13050922

Fabio Falchi and Salvador Bará. 2021. Computing light pollution indicators for environ-
mental assessment. Natural Sciences 1, 2 (2021), e10019. https://doi.org/10.1002/
ntls.10019 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ntls.10019

R. H. Garstang. 1986. Model for Artificial Night-Sky Illumination. Publications of the
Astronomical Society of the Pacific 98 (1986), 364. https://doi.org/10.1086/131768

Kevin J. Gaston, Jonathan Bennie, Thomas W. Davies, and John Hopkins. 2013. The
Ecological Impacts of Nighttime Light Pollution: A Mechanistic Appraisal. Biological
Reviews 88, 4 (2013), 912–927. https://doi.org/10.1111/brv.12036

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Sébastien Hillaire. 2020. A Scalable and Production Ready Sky and Atmosphere Ren-

dering Technique. Computer Graphics Forum 39, 4 (2020), 13–22.
Lukas Hosek and Alexander Wilkie. 2012. An Analytic Model for Full Spectral Sky-

Dome Radiance. ACM Trans. Graph. 31, 4, Article 95 (jul 2012), 9 pages. https:
//doi.org/10.1145/2185520.2185591

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022.
Mitsuba 3 renderer. https://mitsuba-renderer.org.

Henrik Wann Jensen, Frédo Durand, Julie Dorsey, Michael M. Stark, Peter Shirley,
and Simon Premože. 2001. A Physically-Based Night Sky Model. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques -
SIGGRAPH ’01 (2001). ACM Press, 399–408. https://doi.org/10.1145/383259.383306

K. Kaneda, T. Okamoto, E. Nakamae, and T. Nishita. 1991. Photorealistic Image Synthesis
for Outdoor Scenery under Various Atmospheric Conditions. The Visual Computer
7, 5-6 (1991), 247–258.

R. V. Klassen. 1987. Modeling the effect of the atmosphere on light. ACM Transactions
on Graphics 6, 3 (1987), 215–237.

2The database is available at https://eogdata.mines.edu/products/vnl/

M. Kocifaj. 2007. Light-Pollution Model for Cloudy and Cloudless Night Skies with
Ground-Based Light Sources. Applied optics (2007). https://doi.org/10.1364/AO.46.
003013

Miroslav Kocifaj. 2018. Multiple scattering contribution to the diffuse light of a night
sky: A model which embraces all orders of scattering. Journal of Quantitative
Spectroscopy and Radiative Transfer 206 (2018), 260–272. https://doi.org/10.1016/j.
jqsrt.2017.11.020

Miroslav Kocifaj and František Kundracik. 2016. Modeling the Night Sky Brightness
Distribution via New SkyGlow Simulator. In 2016 IEEE Lighting Conference of the
Visegrad Countries (Lumen V4) (2016-09). 1–3. https://doi.org/10.1109/LUMENV.
2016.7745553

Tom Minor, Robert R. Poncelet, and Eike Falk Anderson. 2016. Skyglow: Towards
a Night-time Illumination Model for Urban Environments. In EG 2016 - Posters,
Luis Gonzaga Magalhaes and Rafal Mantiuk (Eds.). The Eurographics Association.
https://doi.org/10.2312/egp.20161055

Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae. 1993.
Display of the Earth Taking into Account Atmospheric Scattering. In Proceedings of
ACM SIGGRAPH 1993. 175–182.

Sean O’Neil. 2007. Accurate atmospheric scattering. Addison-Wesley Professional.
Mark S. Peercy. 1993. Linear Color Representations for Full Speed Spectral Rendering.

In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing Machinery,
New York, NY, USA, 191–198. https://doi.org/10.1145/166117.166142

A. J. Preetham, Peter Shirley, and Brian Smits. 1999. A Practical Analytic Model for
Daylight. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co.,
USA, 91–100. https://doi.org/10.1145/311535.311545

Ravi Ramamoorthi. 2009. Precomputation-Based Rendering. NOW Publishers Inc.
Pinar Satilmis, Thomas Bashford-Rogers, Alan Chalmers, and Kurt Debattista. 2017. A

Machine-Learning-Driven Sky Model. IEEE Computer Graphics and Applications 37,
1 (2017), 80–91. https://doi.org/10.1109/MCG.2016.67

Alexandre Simoneau, Martin Aubé, Jérôme Leblanc, Rémi Boucher, Johanne
Roby, and Florence Lacharité. 2021. Point spread functions for map-
ping artificial night sky luminance over large territories. Monthly No-
tices of the Royal Astronomical Society 504, 1 (04 2021), 951–963. https:
//doi.org/10.1093/mnras/stab681 arXiv:https://academic.oup.com/mnras/article-
pdf/504/1/951/37251093/stab681.pdf

Héctor Antonio Solano Lamphar. 2018. The Emission Function of Ground-Based
Light Sources: State of the Art and Research Challenges. Journal of Quantitative
Spectroscopy and Radiative Transfer 211 (2018), 35–43.

Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. 2005. A
practical analytic singlescattering model for real time rendering. ACM Transactions
on Graphics 24, 3 (2005), 1040–1049. https://doi.org/10.1145/1073204.1073309

Carsten Wenzel. 2007. Real time atmospheric effects in games revisited. In Game
Developers Conference.

Alexander Wilkie, Petr Vevoda, Thomas Bashford-Rogers, Lukáš Hošek, Tomáš Iser,
Monika Kolářová, Tobias Rittig, and Jaroslav Křivánek. 2021. A Fitted Radiance and
Attenuation Model for Realistic Atmospheres. ACM Trans. Graph. 40, 4, Article 135
(jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459758

ACM Trans. Graph., Vol. 42, No. 6, Article 219. Publication date: December 2023.

https://nasa-develop.github.io/SET/
https://doi.org/10.1016/j.jqsrt.2019.106658
https://doi.org/10.1016/j.jqsrt.2019.106658
https://doi.org/10.1088/2040-8978/17/10/105607
https://doi.org/10.1111/j.1467-8659.2008.01245.x
https://doi.org/10.1111/j.1467-8659.2008.01245.x
https://doi.org/10.1111/j.1365-2966.2012.21884.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2966.2012.21884.x
https://doi.org/10.3390/rs13050922
https://doi.org/10.3390/rs13050922
https://doi.org/10.1002/ntls.10019
https://doi.org/10.1002/ntls.10019
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ntls.10019
https://doi.org/10.1086/131768
https://doi.org/10.1111/brv.12036
https://doi.org/10.1145/2185520.2185591
https://doi.org/10.1145/2185520.2185591
https://doi.org/10.1145/383259.383306
https://eogdata.mines.edu/products/vnl/
https://doi.org/10.1364/AO.46.003013
https://doi.org/10.1364/AO.46.003013
https://doi.org/10.1016/j.jqsrt.2017.11.020
https://doi.org/10.1016/j.jqsrt.2017.11.020
https://doi.org/10.1109/LUMENV.2016.7745553
https://doi.org/10.1109/LUMENV.2016.7745553
https://doi.org/10.2312/egp.20161055
https://doi.org/10.1145/166117.166142
https://doi.org/10.1145/311535.311545
https://doi.org/10.1109/MCG.2016.67
https://doi.org/10.1093/mnras/stab681
https://doi.org/10.1093/mnras/stab681
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/504/1/951/37251093/stab681.pdf
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/504/1/951/37251093/stab681.pdf
https://doi.org/10.1145/1073204.1073309
https://doi.org/10.1145/3450626.3459758

	Abstract
	1 Introduction
	2 Related Work
	3 Fast Computation of Skyglow
	3.1 Light Pollution Computation
	3.2 Skyglow by a Single Light Source
	3.3 Skyglow by Many Light Sources
	3.4 Implementation

	4 Inverse Investigation
	4.1 Inverse Investigation of Light Pollution
	4.2 Inverse Investigation of Skyglow

	5 Results
	5.1 Performance Evaluation
	5.2 Applications
	5.3 Experiments with Multiple Scattering

	6 Discussion
	7 Conclusions
	Acknowledgments
	References

