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This supplemental document includes the derivation of the variance for our resampling estimator (Sec. 1 and
Sec. 2) and our resampling-aware weighting functions (Sec. 3). The derivation of the conditional variance V [Ît |Z̄t ]
(Eq. (8) in the paper) is shown in Sec. 1, where Ît is the resampling estimator and Z̄t is the eye sub-path sample
with t vertices. The derivation of the variance V [Ît ] of the resampling estimator Ît (Eqs. (9) and (10) in the paper)
is shown in Sec. 2. This supplemental document is also intended to show additional results (San Miguel scene)
and details of Fig. 4 in the main paper.

1 DERIVATION OF THE VARIANCE V [Ît |Z̄t ]

The resampling estimator Ît estimates the contributions from all the paths having eye sub-path with t vertices.
The resampling estimator estimates the following integral It as:

It =

∫
Ωt

wt (x̄)f (x̄)dµ(x̄),

where Ωt is the space of the paths whose eye sub-paths have t vertices, andwt is the weighting function for the
resampling estimator. We define д(x̄) = wt (x̄)f (x̄) to simplify the notation. To compute It , we first sample an eye
sub-path with t vertices as:

It ≈
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ) =
1

p(Z̄t )

∑
s≥1

∫
As

д(ȳZ̄t )dµ(ȳ),

where Z̄t is the eye sub-path sample with t vertices, p is the sampling pdf, ȳ is an integral variable of light
sub-paths, and ȳZ̄t is a full light path by connecting the last vertex of the light sub-path ȳ and the t-th vertex
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Table 1. Notations and symbols. Subscripts i and j represent the index of the sample. Subscripts s and t indicate the number
of vertices for light and eye sub-paths, respectively.

symbol meaning
f measurement contribution function
x̄ full light path x0 . . . xk
ȳ light sub-path
z̄ eye sub-path
Ȳs ,i i-th light sub-path sample with s vertices
Z̄t eye sub-path sample with t vertices
Ȳ a set of proposals {Ȳ1,1, . . . , Ȳ1,M , . . . , Ȳs ,i , . . .}

X̄s ,i full light path sample connecting Ȳs ,i and Z̄t
X̄ a set of proposals {X̄1,1, . . . , X̄1,M , . . . , X̄s ,i , . . .}

X̄ j j-th sample from X̄
M number of light sub-path samples
N number of resampling light sub-paths per iteration

A, As , A scene suface, s-dimensional product of A, union of As

q∗(x̄) target distribution (a part of contribution function f )
q(x̄),qs (x̄) target pdfs (normalize q∗ over A and As )
Q , Qs normalization factors (integrate q∗ over A and As )

of the eye sub-path sample Z̄t . A is the integral domain, which is defined as A = ∪s≥1A
s , where As is the

s-dimensional Cartesian product over the scene surface A.
Our method estimates the integral It by using RIS with partitioned integral domain As . For each integral

domain As ,M light sub-path samples {Ȳs ,1, . . . , Ȳs ,M } are prepared to estimate each integral over As .

1
p(Z̄t )

∑
s≥1

∫
As

д(ȳZ̄t )dµ(ȳ) =
1

p(Z̄t )

∑
s≥1

1
M

M∑
i=1

д(Ȳs ,i Z̄t )

p(Ȳs ,i )
, (1)

where Ȳs ,i Z̄t is a full light path connecting the light sub-path sample Ȳs ,i and the eye sub-path sample Z̄t .
By drawing N samples from the set of proposals Ȳ = {Ȳ1,1, . . . , Ȳ1,M , . . . , Ȳs ,1, . . . , Ȳs ,M , . . .}, the resampling

estimator Ît is given by:

Ît =
1

MN

N∑
j=1

д(ȲjZ̄t )

p(Ȳj )p(Z̄t )Pr (Ȳj |Ȳ)
,

Pr (Ȳj |Ȳ) =
q∗(ȲjZ̄t )/p(Ȳj )∑

s≥1
∑M

i=1 q
∗(Ȳs ,i Z̄t )/p(Ȳs ,i )

,

where Ȳj is the j-th sample from the set of proposals Ȳ and Pr is referred to as the resampling pmf.
To simplify the notation, we represent a full light path sample Ȳs ,i Z̄t and ȲjZ̄t with X̄s ,i and X̄ j respectively.

We also represent the set of proposals as X̄ = {X̄1,1, . . . , X̄1,M , . . . , X̄s ,1, . . . , X̄s ,M , . . .}. By using these notations,
the resampling pmf Pr (X̄ j |X̄), which is equivalent to Pr (Ȳj |Ȳ), is expressed by:

Pr (X̄ j |X̄) =
q∗(X̄ j )/p(X̄ j )∑

s≥1
∑M

i=1 q
∗(X̄s ,i )/p(X̄s ,i )

=
q∗(ȲjZ̄t )/p(Ȳj )���p(Z̄t )∑

s≥1
∑M

i=1 q
∗(Ȳs ,i Z̄t )/p(Ȳs ,i )���p(Z̄t )

= Pr (Ȳj |Ȳ), (2)
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where p(X̄ j ) = p(Ȳj )p(Z̄t ) and p(X̄s ,i ) = p(Ȳs ,i )p(Z̄t ) are used. By using the resampling pmf Pr (X̄ j |X̄), the
resampling estimator Ît is rewritten as:

Ît =
1

MN

N∑
j=1

д(ȲjZ̄t )

p(Ȳj )p(Z̄t )Pr (Ȳj |Ȳ)
=

1
MN

N∑
j=1

д(X̄ j )

p(X̄ j )Pr (X̄ j |X̄)
. (3)

The conditional variance V [Ît |Z̄t ] for the eye sub-path Z̄t is expressed as:

V [Ît |Z̄t ] = E[Î 2
t |Z̄t ] − E[Ît |Z̄t ]

2. (4)

We first describe the derivation of the conditional expected value E[Ît |Z̄t ] in Sec. 1.1, then that of E[Î 2
t |Z̄t ] is

described in Sec. 1.2.

1.1 Derivation of E[Ît |Z̄t ]
The conditional expected value E[Ît |Z̄t ] is calculated by the following equation:

E[Ît |Z̄t ] = E

[
1

MN

N∑
j=1

д(X̄ j )

p(X̄ j )Pr (X̄ j |X̄)
|Z̄t

]
. (5)

By substituting Eq. (2) into Eq. (5), E[Ît |Z̄t ] is given by:

E[Ît |Z̄t ] = E

[
1

MN

N∑
j=1

д(X̄ j )

p(X̄ j )

∑
s≥1

∑M
i=1 q

∗(X̄s ,i )/p(X̄s ,i )

q∗(X̄ j )/p(X̄ j )
|Z̄t

]
= E

[(
1
N

N∑
j=1

д(X̄ j )

q∗(X̄ j )

) (
1
M

∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)
|Z̄t

]
.

(6)

By using E[ab] = E[E[a |b]b], the expected value of the product 1
N

∑N
j=1 д/q

∗ and 1
M

∑
s≥1

∑M
i=1 q

∗/p is calculated
by:

E
[
Ît |Z̄t

]
= E

[
E

[
1
N

N∑
j=1

д(X̄ j )

q∗(X̄ j )
|X̄

] (
1
M

∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)
|Z̄t

]
. (7)

Since the samples X̄ j are independent and identically distributed, the expected values of the samples are identical
as:

E

[
1
N

N∑
j=1

д(X̄ j )

q∗(X̄ j )
|X̄

]
=

1
N

N∑
j=1

E

[
д(X̄1)

q∗(X̄1)
|X̄

]
= E

[
д(X̄1)

q∗(X̄1)
|X̄

]
. (8)

In addition, since X̄1 is one of the set X̄, the expected value is calculated by summing over all the proposals:

E

[
д(X̄1)

q∗(X̄1)
|X̄

]
=

∑
s≥1

M∑
i=1

д(X̄s ,i )

q∗(X̄s ,i )
Pr (X̄s ,i |X̄) =

∑
s≥1

M∑
i=1

д(X̄s ,i )

����q∗(X̄s ,i )
·

����q∗(X̄s ,i )/p(X̄s ,i )∑
s≥1

∑M
i=1 q

∗(X̄s ,i )/p(X̄s ,i )

=
∑
s≥1

M∑
i=1

д(X̄s ,i )

p(X̄s ,i )

(∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)−1

. (9)
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We substitute these equations into Eq. (7) as:

E[Ît |Z̄t ] = E


(∑
s≥1

M∑
i=1

д(X̄s ,i )

p(X̄s ,i )

)
·
���������
(∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)−1

·
1
M
���

���
��(∑

s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)
|Z̄t


= E

[
1
M

∑
s≥1

M∑
i=1

д(X̄s ,i )

p(X̄s ,i )
|Z̄t

]
=

∑
s≥1

1
M

M∑
i=1

E

[
д(X̄s ,i )

p(X̄s ,i )
|Z̄t

]
=

∑
s≥1

1
M

M∑
i=1

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
=

∑
s≥1

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
.

In summary, the expected value of the resampling estimator Ît is expressed as:

E[Ît |Z̄t ] =
∑
s≥1

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
. (10)

We also prove that the resampling estimator is unbiased as:

E
[
Ît |Z̄t

]
=

1
p(Z̄t )

∑
s≥1

E

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

]
=

1
p(Z̄t )

∑
s≥1

∫
As

д(ȳZ̄t )dµ(ȳ) =
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ). (11)

1.2 Derivation of E[Î 2
t |Z̄t ]

E[Î 2
t |Z̄t ] can be calculated in the similar way as E[Ît |Z̄t ]. By using Eq. (7), E[Î 2

t |Z̄t ] is calculated by

E

E

(

1
N

N∑
j=1

д(X̄ j )

q∗(X̄ j )

)2

|X̄

(

1
M

∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)2

|Z̄t

 . (12)

The expected value of the square of the sum is simplified as the following equation.

E


(

1
N

N∑
i=1

f (Xi )

)2 =
1
N
E[f (X1)

2] +

(
1 − 1

N

)
E[f (X1)]

2.

By using this, the expected value of the square of the sum is calculated by:

E


(

1
N

N∑
j=1

д(X̄ j )

q∗(X̄ j )

)2

|X̄
 =

1
N
E

[(
д(X̄1)

q∗(X̄1)

)2
|X̄

]
+

(
1 − 1

N

)
E

[
д(X̄1)

q∗(X̄1)
|X̄

]2
.

Similar to Eq. (9), the expected value is calculated by summing over all the proposals as:

1
N
E

[(
д(X̄1)

q∗(X̄1)

)2
|X̄

]
=

1
N

∑
s≥1

M∑
i=1

д(X̄s ,i )
2

q∗(X̄s ,i )2
·

q∗(X̄s ,i )/p(X̄s ,i )∑
s≥1

∑M
i=1 q

∗(X̄s ,i )/p(X̄s ,i )

=
1
N

∑
s≥1

M∑
i=1

д(X̄s ,i )
2

q∗(X̄s ,i )p(X̄s ,i )

(∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)−1

, (13)
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(
1 − 1

N

)
E

[
д(X̄1)

q∗(X̄1)
|X̄

]2
=

(
1 − 1

N

) (∑
s≥1

M∑
i=1

д(X̄s ,i )

q∗(X̄s ,i )
·

q∗(X̄s ,i )/p(X̄s ,i )∑
s≥1

∑M
i=1 q

∗(X̄s ,i )/p(X̄s ,i )

)2

=

(
1 − 1

N

) (∑
s≥1

M∑
i=1

д(X̄s ,i )

p(X̄s ,i )

)2 (∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)−2

. (14)

By substituting these equations into Eq. (12), the conditional variance E[Î 2
t |Z̄t ] is expressed by the following

equation:

E[Î 2
t |Z̄t ] = E

[
1
N

∑
s≥1

M∑
i=1

д(X̄s ,i )
2

q∗(X̄s ,i )p(X̄s ,i )
·

1
M2

(∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)
|Z̄t

]
+ E


(
1 − 1

N

) (
1
M

∑
s≥1

M∑
i=1

д(X̄s ,i )

p(X̄s ,i )

)2

|Z̄t

 .
(15)

We first calculate the former expected value:

E

[
1
N

(
1
M

∑
s≥1

M∑
i=1

д(X̄s ,i )
2

q∗(X̄s ,i )p(X̄s ,i )

) (
1
M

∑
s≥1

M∑
i=1

q∗(X̄s ,i )

p(X̄s ,i )

)
|Z̄t

]
. (16)

The expected value of the product of two sums is simplified to the following equation:

E

[(
1
M

∑
s≥1

M∑
i=1

f (Xs ,i )

) (
1
M

∑
s≥1

M∑
i=1

д(Xs ,i )

)]
=

1
M

∑
s≥1

E[f (Xs ,1)д(Xs ,1)] −
1
M

∑
s≥1

E[f (Xs ,1)]E[д(Xs ,1)] +

(∑
s≥1

E[f (Xs ,1)]

) (∑
s≥1

E[д(Xs ,1)]

)
. (17)

This leads to the following equation:

1
MN

∑
s≥1

E

[
д2

p2 |Z̄t

]
−

1
MN

∑
s≥1

E

[
д2

pq∗
|Z̄t

]
E

[
q∗

p
|Z̄t

]
+

1
N

(∑
s≥1

E

[
д2

pq∗
|Z̄t

]) (∑
s≥1

E

[
q∗

p
|Z̄t

])
, (18)

where we omit the augment Xs ,1 to simplify the notation.
Then the latter expected value in Eq. (15) is calculated by:

1
M

(
1 − 1

N

) ∑
s≥1

E

[
д2

p2 |Z̄t

]
−

1
M

(
1 − 1

N

) ∑
s≥1

(
E

[
д

p
|Z̄t

] )2
+

(
1 − 1

N

) (∑
s≥1

E

[
д

p
|Z̄t

])2

. (19)

By summing Eqs. (18) and (19), E[Î 2
t |Z̄t ] is calculated by:

E[Î 2
t |Z̄t ] =

1
M

∑
s≥1

E

[
д2

p2 |Z̄t

]
−

1
MN

∑
s≥1

E

[
д2

pq∗
|Z̄t

]
E

[
q∗

p
|Z̄t

]
+

1
N

(∑
s≥1

E

[
д2

pq∗
|Z̄t

]) (∑
s≥1

E

[
q∗

p
|Z̄t

])
−

1
M

∑
s≥1

(
E

[
д

p
|Z̄t

] )2
+

1
MN

∑
s≥1

(
E

[
д

p
|Z̄t

] )2
+

(
1 − 1

N

) (∑
s≥1

E

[
д

p
|Z̄t

])2

. (20)
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1.3 Derivation of V [Ît |Z̄t ]

The conditional varianceV [Ît |Z̄t ] is calculated by subtracting E[Ît |Z̄t ]2 from E[Î 2
t |Z̄t ]. By subtracting E[Ît |Z̄t ]2 in

Eq. (10) from Eq. (20) and rearranging the orders for better clarity, V [Ît |Z̄t ] is calculated by:

V [Ît |Z̄t ] =
1
M

(∑
s≥1

E

[
д(X̄s ,1)

2

p(X̄s ,1)2
|Z̄t

]
−

∑
s≥1

(
E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

] )2)
(21)

−
1

MN

(∑
s≥1

E

[
д(X̄s ,1)

2

p(X̄s ,1)q∗(X̄s ,1)
|Z̄t

]
E

[
q∗(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
︸                                                   ︷︷                                                   ︸

Ea

−
∑
s≥1

(
E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

] )2

︸                      ︷︷                      ︸
Eb

)
(22)

+
1
N

((∑
s≥1

E

[
д(X̄s ,1)

2

p(X̄s ,1)q∗(X̄s ,1)
|Z̄t

]) (∑
s≥1

E

[
q∗(X̄s ,1)

p(X̄s ,1)
|Z̄t

])
︸                                                               ︷︷                                                               ︸

Ec

−

(∑
s≥1

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

])2

︸                      ︷︷                      ︸
Ed

)
. (23)

In the following, we further simplify Ea , Eb , Ec , and Ed by using the following relations.

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
=

1
p(Z̄t )

E

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

]
=

1
p(Z̄t )

∫
As

д(ȳZ̄t )dµ(ȳ),

E

[
д(X̄s ,1)

2

p(X̄s ,1)q∗(X̄s ,1)
|Z̄t

]
=

1
p(Z̄t )

E

[
д(X̄s ,1)

2

p(Ȳs ,1)q∗(X̄s ,1)
|Z̄t

]
=

1
p(Z̄t )

∫
As

д(ȳZ̄t )
2

q∗(ȳZ̄t )
dµ(ȳ), (24)

E

[
q∗(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
=

1
p(Z̄t )

E

[
q∗(X̄s ,1)

p(Ȳs ,1)
|Z̄t

]
=

1
p(Z̄t )

∫
As

q∗(ȳZ̄t )dµ(ȳ). (25)

Substituting Eqs. (24) and (25) into Ea leads to

Ea =
1

p(Z̄t )2

∑
s≥1

(∫
As

д(ȳZ̄t )
2

q∗(ȳZ̄t )
dµ(ȳ)

) (∫
As

q∗(ȳZ̄t )dµ(ȳ)

)
=

1
p(Z̄t )2

∑
s≥1

∫
As

д(ȳZ̄t )
2

q∗(ȳZ̄t )/
∫
As q

∗(ȳZ̄t )dµ(ȳ)
dµ(ȳ).

The denominator of the integrand is represented by the conditional pdf qs (ȳ |Z̄t ) as:

q∗(x̄s )∫
As q

∗(ȳZ̄t )dµ(ȳ)
=

q∗(ȳ, Z̄t )∫
As q

∗(ȳ, Z̄t )dµ(ȳ)
= qs (ȳ |Z̄t ). (26)

Then Ea is expressed by the expected value with the pdf qs as:

Ea =
1

p(Z̄t )2

∑
s≥1

∫
As

д(ȳZ̄t )
2

qs (ȳ |Z̄t )
dµ(ȳ) =

1
p(Z̄t )2

∑
s≥1

E

[
д(X̄s )

2

qs (Ȳs |Z̄t )2
|Z̄t

]
=

∑
s≥1

E

[
д(X̄s )

2

qs (X̄s )2
|Z̄t

]
,

where Xs is a full path whose light sub-path Ȳs follows the conditional pdf qs , and we define the pdf qs (x̄) =
qs (ȳz̄) = qs (ȳ |z̄)p(z̄).

We change the pdf p in Eb into the pdf qs as:

Eb =
∑
s≥1

(
1

p(Z̄t )
E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

] )2
=

∑
s≥1

(
1

p(Z̄t )

∫
As

д(ȳZ̄t )dµ(ȳ)

)2
=

∑
s≥1

(
E

[
д(X̄s )

qs (X̄s )
|Z̄t

] )2
. (27)
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Ec is simplified in the same way as:

Ec =

(∑
s≥1

E

[
д(X̄s ,1)

2

p(X̄s ,1)q∗(X̄s ,1)
|Z̄t

]) (∑
s≥1

E

[
q∗(X̄s ,1)

p(X̄s ,1)
|Z̄t

])
=

1
p(Z̄t )2

(∑
s≥1

∫
As

д2(ȳZ̄t )

q∗(ȳZ̄t )
dµ(ȳ)

) (∑
s≥1

∫
As

q∗(ȳZ̄t )dµ(ȳ)

)
=

1
p(Z̄t )2

(∫
A

д2(ȳZ̄t )

q∗(ȳZ̄t )
dµ(ȳ)

) (∫
A

q∗(ȳZ̄t )dµ(ȳ)

)
=

1
p(Z̄t )2

∫
A

д(ȳZ̄t )
2

q∗(ȳZ̄t )/
∫
A
q∗(ȳZ̄t )dµ(ȳ)

dµ(ȳ).

Similar to the conditional pdf qs (ȳ |z̄), we can represent the denominator of the integrand with the conditional
pdf q as:

q∗(ȳZ̄t )∫
A
q∗(ȳZ̄t )dµ(ȳ)

=
q∗(ȳ, Z̄t )∫

A
q∗(ȳ, Z̄t )dµ(ȳ)

= q(ȳ |Z̄t ).

Ec is then expressed by the expected value with the pdf q as:

Ec =
1

p(Z̄t )2

∫
A

д(ȳZ̄t )
2

q(ȳ |Z̄t )
dµ(ȳ) =

1
p(Z̄t )2

E

[
д(X̄ )2

q(Ȳ |Z̄t )2
|Z̄t

]
= E

[
д(X̄ )2

q(X̄ )2
|Z̄t

]
,

where X̄ = Ȳ Z̄t is a full path whose light sub-path Ȳ follows the conditional pdf q(Ȳ |Z̄t ), and we define the pdf
q(x̄) = q(ȳ |z̄)p(z̄).

Finally, Ed is expressed as the expected value with the pdf q as:

Ed =

(∑
s≥1

E

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

])2

=

(
1

p(Z̄t )

∑
s≥1

∫
As

д(ȳZ̄t )dµ(ȳ)

)2

=

(
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ)

)2
=

(
E

[
д(X̄ )

q(X̄ )
|Z̄t

] )2
.

Substituting these equations into V [Ît |Z̄t ] leads to the following equation:

1
M

∑
s≥1

V

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
−

1
MN

(∑
s≥1

E

[
д2(X̄s )

q2
s (X̄s )

|Z̄t

]
︸                 ︷︷                 ︸

Ea

−
∑
s≥1

(
E

[
д(X̄s )

qs (X̄s )
|Z̄t

] )2

︸                     ︷︷                     ︸
Eb

)
+

1
N

(
E

[
д(X̄ )2

q(X̄ )2
|Z̄t

]
︸          ︷︷          ︸

Ec

−

(
E

[
д(X̄ )

q(X̄ )
|Z̄t

] )2

︸              ︷︷              ︸
Ed

)
.

In summary, V [Ît |Z̄t ] (Eq. (8) in the paper) is expressed as:

V [Ît |Z̄t ] =
1
M

∑
s≥1

V

[
д(X̄s ,1)

p(X̄s ,1)
|Z̄t

]
−

1
MN

∑
s≥1

V

[
д(X̄s )

qs (X̄s )
|Z̄t

]
+

1
N
V

[
д(X̄ )

q(X̄ )
|Z̄t

]
. (28)

2 DERIVATION OF V [Ît ]

We now derive the variance V [Ît ] by taking into accout the randomness of eye sub-path Z̄t . The variance V [Ît ] is
calculated by the law of total variance as:

V [Ît ] = E[V [Ît |Z̄t ]] +V [E[Ît |Z̄t ]]. (29)

In the previous section, we have included the density p(Z̄t ) in the pdfs p, qs , and q as constant. To take into
account the randomness of Z̄t , we first decompose the pdfs p, q, and qs into the pdf for the eye sub-path p(Z̄t )
and pdfs for light sub-paths as:

p(X̄s ,1) = p(Ȳs ,1)p(Z̄t ),q(X̄ ) = q(Ȳ |Z̄t )p(Z̄t ),qs (X̄s ) = qs (Ȳs |Z̄t )p(Z̄t ), (30)
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where q and qs are conditional pdfs since Ȳ and Ȳs are resampled taking into account the eye sub-path Z̄t , while
the pdf for light sub-path Ȳs ,1 is independent of Z̄t as the traditional BPT.
By substituting Eq. (30) into Eqs. (10) and (28), the conditional expected value E[Ît |Z̄t ] and the conditional

variance V [Ît |Z̄t ] is expressed as:

E[Ît |Z̄t ] =
1

p(Z̄t )

∑
s≥1

E

[
д(X̄s ,1)

p(Ȳs ,1)

]
,

V [Ît |Z̄t ] =
1

p(Z̄t )2

(
1
M

∑
s≥1

V

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

]
−

1
MN

∑
s≥1

V

[
д(X̄s )

qs (Ȳs |Z̄t )
|Z̄t

]
+

1
N
V

[
д(X̄ )

q(Ȳ |Z̄t )
|Z̄t

])
.

By substituting above two equations into Eq. (29), V [Ît ] is expressed by:

1
M

∑
s≥1

E

[
1

p(Z̄t )2
V

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

] ]
−

1
MN

∑
s≥1

E

[
1

p(Z̄t )2
V

[
д(X̄s )

qs (Ȳs |Z̄t )
|Z̄t

] ]
+

1
N
E

[
1

p(Z̄t )2
V

[
д(X̄ )

q(Ȳ |Z̄t )
|Z̄t

] ]
︸                                                                                                                                          ︷︷                                                                                                                                          ︸

E[V [Ît |Z̄t ]]

+V

[
1

p(Z̄t )

∑
s≥1

E

[
д(X̄s ,1)

p(Ȳs ,1)

] ]
︸                            ︷︷                            ︸

V [E[Ît |Z̄t ]]

.

By using E[V [a |b]b2] = V [ab] −V [E[a |b]b] and considering 1
p(Z̄t )

as a random variable of Z̄t ,

1
M

∑
s≥1

E

[
1

p(Z̄t )2
V

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

] ]
=

1
M

∑
s≥1

(
V

[
д(X̄s ,1)

p(Ȳs ,1)
·

1
p(Z̄t )

]
−V

[
1

p(Z̄t )
E

[
д(X̄s ,1)

p(Ȳs ,1)
|Z̄t

] ] )
=

1
M

∑
s≥1

(
V

[
д(X̄s ,1)

p(X̄s ,1)

]
−V

[
1

p(Z̄t )

∫
As

д(ȳZ̄t )dµ(ȳ)

] )
,

1
MN

∑
s≥1

E

[
1

p(Z̄t )2
V

[
д(X̄s )

qs (Ȳs |Z̄t )
|Z̄t

] ]
=

1
MN

∑
s≥1

(
V

[
д(X̄s )

qs (Ȳs |Z̄t )
·

1
p(Z̄t )

]
−V

[
1

p(Z̄t )
E

[
д(X̄s )

qs (Ȳs |Z̄t )
|Z̄t

] ] )
=

1
MN

∑
s≥1

(
V

[
д(X̄s )

qs (X̄s )

]
−V

[
1

p(Z̄t )

∫
As

д(ȳZ̄t )dµ(ȳ)

] )
,

1
N
E

[
1

p(Z̄t )2
V

[
д(X̄ )

q(Ȳ |Z̄t )
|Z̄t

] ]
=

1
N

(
V

[
д(X̄ )

q(Ȳ |Z̄t )
·

1
p(Z̄t )

]
−V

[
1

p(Z̄t )
E

[
д(X̄ )

q(Ȳ |Z̄t )
|Z̄t

] ] )
=

1
N

(
V

[
д(X̄ )

q(X̄ )

]
−V

[
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ)

] )
,

V

[
1

p(Z̄t )

∑
s≥1

E

[
д(X̄s ,1)

p(Ȳs ,1)

] ]
= V

[
1

p(Z̄t )

∑
s≥1

∫
As

д(ȳZ̄t )dµ(ȳ)

]
= V

[
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ)

]
.

By summing up all the above equations, the variance V [Ît ] (Eq. (9) in the paper) is expressed by:
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V [Ît ] =
1
M

∑
s≥1

V

[
д(X̄s ,1)

p(X̄s ,1)

]
−

1
MN

∑
s≥1

V

[
д(X̄s )

qs (X̄s )

]
+

1
N
V

[
д(X̄ )

q(X̄ )

]
−

1
M

(
1 − 1

N

) ∑
s≥1

V

[
1

p(Z̄t )

∫
As

д(ȳZ̄t )dµ(ȳ)

]
+

(
1 − 1

N

)
V

[
1

p(Z̄t )

∫
A

д(ȳZ̄t )dµ(ȳ)

]
. (31)

To make the minimization problem of the variance V [Ît ] feasible, we set the number of resampling light
sub-path samples N to one. This simplifies the above equation to the following (Eq. (10) in the paper):

V [Ît ] =
1
M

∑
s≥1

V

[
д(X̄s ,1)

p(X̄s ,1)

]
−

1
M

∑
s≥1

V

[
д(X̄s )

qs (X̄s )

]
+V

[
д(X̄ )

q(X̄ )

]
. (32)

3 DERIVATION OF WEIGHTING FUNCTIONSwt

We derive the weighting functions to reduce the variance V [Î ] of the pixel measurement I . We first define the
variance V [Î ] and then derive the weighting function.

3.1 Definition of the variance V [Î ]

The pixel measurement I is estimated by a sum of estimators with different sampling techniques as:

Î =
∑
t ≥2

Ît +
∑
s≥2

Îs ,0 +
∑
t ≥2

Î0,t +
∑
s≥1

Îs ,1, (33)

where Îs ,t is the estimate of the contributions from the paths sampled by connecting the t-th vertex of an eye
sub-path z̄ and the s-th vertex of a light sub-path ȳ. Îs ,0 and Î0,t estimate the contributions of the paths sampled
by using unidirectional sampling from light sources and the camera, respectively. Îs ,1 estimates the contributions
of the paths sampled by using light tracing.
The variance V [Î ] is calculated by:

V [Î ] =
∑
t ≥2

V [Ît ] +
∑
s≥2

1
Ns ,0

V [Îs ,0] +
∑
t ≥2

1
N0,t

V [Î0,t ] +
∑
s≥1

1
Ns ,1

V [Îs ,1]. (34)

where Ns ,0, N0,t , and Ns ,1 are the number of samples for each sampling technique, and the number of samples
for the resampling estimator Ît (i.e., N ) is one (and thus the reciprocal of N is omitted).

We now consider a path x̄ = x0 . . . xk with length k , and k + 2 strategies can take the same path x̄ . These k + 2
strategies can be identified by the number of the eye sub-path vertices, t , and the number of the light sub-path
vertices is specified uniquely as s = k − t + 1. k − 1 strategies (t = 2, . . . ,k) are handled by our method. The other
sampling strategies, namely unidirectional sampling (s = 0, t ≥ 2), (s ≥ 2, t = 0) and light tracing (s ≥ 1, t = 1)
for a path with length k are also represented by t = k + 1, t = 0, and t = 1, respectively. These three strategies
(t = 0, 1,k + 1) are handled by BPT. We define ΛI S = {0, 1,k + 1} and ΛRIS = {2, . . . ,k} to represent these two
types of strategy.
For a path x̄ with length k , the variance V [Î ] in Eq. (34) is rewritten as:

V [Î ] =
∑

t ∈ΛRIS

V [Ît ] +
1

Nk+1,0
V [Îk+1,0] +

1
N0,k+1

V [Î0,k+1] +
1

Nk ,1
V [Îk ,1]
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To simplify the notation, we gather the last three terms handled by BPT using ΛI S and represent the number of
samples Ns ,t with Nt . By substituting Eq. (32) for V [Ît ], the variance is rewritten as:

V [Î ] =
∑

t ∈ΛRIS

(
1
M
V

[
wt f

p

]
−

1
M
V

[
wt f

qs

]
+V

[
wt f

q

] )
+

∑
t ∈ΛI S

1
Nt

V

[
wt f

p

]
, (35)

where д is replaced with wt f , Nt is the number of samples handled by BPT, and the arguments are omitted
for simplicity. The summation over s in Eq. (32) is eliminated since the number of the light sub-path vertices is
uniquely determined as s = k − t + 1.

3.2 Derivation of weighting functions
We derive the weighting functions in the same sense as the balance heuristic. That is, we base on the following
premises that are used in the derivation of the balance heuristic [Veach 1997] to reduce the variance V [Î ].

• Minimize E[Î 2] as the upper bound of the variance V [Î ] = E[Î 2] − E[Î ]2, instead of minimizing the variance
V [Î ] itself.

• Do not consider the covariance terms (i.e., the correlations of light sub-paths).
Instead of minimizing the variance V in Eq. (35) itself, we minimize the second moment E[Î 2] as the upper

bound in the same way as the balance heuristic:

E[Î 2] =
∑

t ∈ΛRIS

(
1
M
E

[
w2
t f

2

p2

]
−

1
M
E

[
w2
t f

2

q2
s

]
+ E

[
w2
t f

2

q2

] )
+

∑
t ∈ΛI S

1
Nt

E

[
w2
t f

2

p2

]
=

∑
t ∈ΛRIS

(
1
M

∫
w2
t (x̄)f

2(x̄)

p(x̄)
dµ(x̄) −

1
M

∫
w2
t (x̄)f

2(x̄)

qs (x̄)
dµ(x̄) +

∫
w2
t (x̄)f

2(x̄)

q(x̄)
dµ(x̄)

)
+

∑
t ∈ΛI S

1
Nt

∫
w2
t (x̄)f

2(x̄)

p(x̄)
dµ(x̄). (36)

Since it is sufficient to minimize the integrand at each path x̄ separately and f (x̄) is constant for all strategies, we
minimize the following objective function:∑

t ∈ΛRIS

(
1
M

w2
t (x̄)

p(x̄)
−

1
M

w2
t (x̄)

qs (x̄)
+
w2
t (x̄)

q(x̄)

)
+

∑
t ∈ΛI S

1
Nt

wt (x̄)
2

p(x̄)
, (37)

subject to the condition
∑k+1

t=0 wt = 1. We further simplify the objective function by using the following relation
between the pdfs q and qs :

qs (x̄) =
q∗(x̄)∫

As q
∗(x̄)dµ(ȳ)

=
q∗(x̄)∫

A
q∗(x̄)dµ(ȳ)

·

∫
A
q∗(x̄)dµ(ȳ)∫

As q
∗(x̄)dµ(ȳ)

= q(x̄)
Q

Qs
, (38)

where Q and Qs are normalization factors. By substituting this, the objective function is expressed by:∑
t ∈ΛRIS

(
1
M

1
p(x̄)

+

(
1 − 1

M

Qs

Q

)
1

q(x̄)

)
w2
t (x̄) +

∑
t ∈ΛI S

1
Nt

wt (x̄)
2

p(x̄)
, (39)

To simplify and unify the notations, we define the following function pris:

pris(x̄) =

(
1
M

1
p(x̄)

+

(
1 − 1

M

Qs

Q

)
1

q(x̄)

)−1
. (40)
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Then the objective function is simplified as:
k+1∑
t=0

w2
t (x̄)

ntpt (x̄)
. (41)

This enables the same derivation of the weighting functions of the balance heuristic [Veach 1997, p. 289] as:

wt (x̄) =
ntpt (x̄)∑k+1
i=0 nipi (x̄)

, (42)

nt =

{
1 (t ∈ ΛRIS )

Nt (t ∈ ΛI S )
, (43)

pt (x̄) =

{ (
1
M

1
p(x̄ ) +

(
1 − 1

M
Qs
Q

)
1

q(x̄ )

)−1
(t ∈ ΛRIS )

p(x̄) (t ∈ ΛI S ).
(44)

4 ADDITIONAL RESULTS
San Miguel scene is a relatively vast scene illuminated by an environment map with high directionality, but the
camera is only aimed at a small detail of this scene, whici is hard to deal with BPT. Fig. 1 shows the convergence
graph of MAPEs for San Miguel scene. Although the noise reduction forM = 400 is unstable due to the effects
of light sub-paths with high contribution, our method (solid lines) can converge consistently faster than BPT
(dot-dashed line) and PCBPT (dashed lines).

Fig. 2 shows the iteration counts and MAPEs for various numbers of light sub-pathsM and resampling light
sub-paths N . Similar to the other scenes of Fig. 4 in the main paper,M = 200 and N = 1 works fine in San Miguel
scene. The iteration counts decrease for largerM and N as expected. We evaluated the effects of the number of
nearest cache points Nc for the San Miguel scene. MAPEs for Nc = 1, 3, 5 are 0.134, 0.121, and 0.129, respectively.

5 EQUAL-TIME COMPARISONS USING DIFFERENT TARGET DISTRIBUTIONS
Fig. 3 shows equal-time comparisons between BPT, PCBPT, and our method. We have used two target distributions
for PCBPT and our method, q∗ = fy fyz and q∗ = fyρGV (Eq. (15) in the paper), where fy and fyz are a part of
the contribution function f that depends only on the light sub-path ȳ and depends on both the light sub-path
ȳ and the eye sub-path z̄, respectively. ρ and GV are the BSDF and the geometry term including the visibility,
respectively. The latter target distribution q∗ = fyρGV is equal to the former target distribution q∗ = fy fyz
without the BSDF at the last vertex of the eye sub-path. Classroom, Sponza, and Door scenes are rendered in
1 min, while Bedroom, House, and SanMiguel scenes are rendered in 10 min. Beroom and House scenes are
rendered using our method combined with path guiding and PPM, respectively. In PCBPT and our method, the
numbers of pre-sampled light sub-pathsM are set toM = 100 andM = 200, respectively. In all scenes, our method
yields better performance compared to BPT and PCBPT, and our method consistently yields smaller MAPEs than
PCBPT for both target distributions. This indicates that the performance gain in our method comes from our
resampling-aware weihting function.

Fig. 4 shows the convergence plots for PCBPT and our method using two target distributions q∗ = fy fyz (dashed
line) and q∗ = fyρGV (Eq. (15) in the paper, solid line). In all scenes, our method converges faster than PCBPT for
two target distributions. We have decided to use the latter target distribution q∗ = fyρGV since it yields better
results as shown in Figs. 3 and 4. Moreover, as pronounced in (f) San Miguel scene, unnatural undularion in the
plot is shown (around 20s) using the target distribution q∗ = fy fyz (while it eventually converges faster than
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PCBPT). The use of the target distribution q∗ = fy fyz that includes the BSDF at the last vertex of the eye sub-path
makes the estimate of the normalization factor Q unstable (especially for a small number of pre-sampled light
sub-pathsM), resulting in unstable variance reduction as shown in Fig. 4 (f).
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Fig. 1. Convergence graph of MAPEs for San Miguel scene with different numbers of light sub-paths,M . Our method (solid
lines) withM = 50, 100, 200, 400, 800 converges consistently faster than BPT and PCBPT (dashed lines).
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Fig. 2. Statistics for San Miguel scene. (a) iteration counts and (b) MAPEs for M = 50, 100, 200, 400, and 800. (c) iteration
counts and (d) MAPEs for various numbers of resampling light sub-paths N = 1, 2, 4, 8, and 16. In (a) and (b), N = 1 is used,
and in (c) and (d),M = 200 is used.
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Reference BPT
PCBPT Our method 

0.2430.2260.402 0.427

fyfyzEq.(15) Eq.(15) fyfyz

0.408Classroom (1min)

0.1810.2910.375 0.296 0.177

0.371 0.234 0.239 0.224 0.206

0.1180.1760.281 0.171 0.137

0.151 0.150 0.151 0.136 0.136

0.171 0.152 0.152 0.1340.121

Sponza (1min)

Door (1min)

Bedroom (10min)

House (10min)

SanMiguel (10min)

Fig. 3. Equal-time comparison between BPT, PCBPT (M = 100), and our method (M = 200) for Classroom, Sponza, Door,
Bedroom, House, and SanMiguel scenes. For PCBPT and our method, we used two target distributions q∗(x̄) = fy (ȳ)ρGV
(Eq. (15) in the paper) and q∗(x̄) = fy (ȳ)fyz (ȳ, z̄). The numbers shown in the bottom are MAPEs. As shown in the images and
MAPEs, our method yields better results for both target distributions.
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(a) Classroom (b) Sponza

(c) Door (d) Bedroom

(e) House (f) SanMiguel

Fig. 4. Convergence plots of MAPEs for our method and PCBPT with different target distributions q∗ = fy fyz (dashed line)
and q∗ = fyρGV (solid line). Our method converges faster than PCBPT for both target distributions.
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