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Fig. 1. Equal-time (1 min) comparisons between (a) BPT [Veach 1997], (b) PCBPT [Popov et al. 2015], and (c) our method of Classroom scene. Our resampling-
aware weighting functions can substantially reduce the noise as shown in error images (insets) and mean absolute percentage errors (MAPEs).

Bidirectional path tracing (BPT) with multiple importance sampling (MIS)
is a popular technique for rendering realistic images. Recently, it has been
shown that BPT can be improved by preparing multiple light sub-paths and
by resampling a small number of light sub-paths from them to generate full
paths with large contribution. Traditionally, for MIS weights, the balance
heuristic has widely been used to minimize the upper bound of variance,
where each full path is weighted in proportion to the probability of the
path. Although the probability of the path can change due to the resampling
process, the weighting functions used in the previous methods remain unaf-
fected by the change in probability, resulting in less efficiency. To address
this problem, we propose new weighting functions for BPT with multiple
light sub-paths. Our main contribution is a precise formulation of the vari-
ance and the derivation of the weighting functions that can appropriately
treat the change in probability. We demonstrate that our weighting functions
significantly improve the image quality. We will release a simple version of
our implementation as open source to ensure reproducibility.
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1 INTRODUCTION
Bidirectional path tracing (BPT) is one of the most versatile methods
in light transport simulation. BPT generates sub-paths from the
camera and the light sources, and a full light path is created by
connecting the vertices in an eye sub-path to each of the vertices
in a light sub-path. The pixel intensity is then estimated using
multiple importance sampling (MIS) [Veach 1997]. Each path sample
is weighted by a weighting function. The balance heuristic that
weights a path sample in proportion to the probability density of the
path has widely been used as a weighting function. The robustness
of BPT is a consequence of using weighting functions that aim to
reduce variance.

In the traditional BPT framework, only a single light sub-path is
generated and connected to a given eye sub-path. Popov et al. [2015]
generalized BPT by using multiple light sub-paths and developed
probabilistic connections for bidirectional path tracing (PCBPT).
This method generates a light sub-path from a pre-sampled set of
multiple light sub-paths; firstly, a set of light sub-paths are gen-
erated by probabilistically sampling the path space with a certain
probability density function (pdf), and then a small number of light
sub-paths are resampled probabilistically from the sample set. Sim-
ilar to the balance heuristic, the MIS weights used in PCBPT are
proportional to the pdf of the path. This resampling process can
change the probability of the resampled light sub-path from the
pdf used in generating the pre-sampled set. A key issue is that the
weighting functions used in PCBPT remain unaffected by the change
in the pdfs of resampled light sub-path samples, making the MIS
weights inefficient.

In this paper, we focus on the weighting functions used in the
above generalized BPT framework. We propose new weighting func-
tions which are theoretically derived. Our formulation reveals that
the weighting functions depend on the size of the pre-sampled set of
light sub-paths. When the size is small, the balance heuristic works
fine but it becomes less effective when many paths have been sam-
pled. Our weighting functions automatically adapt to the number
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of pre-sampled light sub-paths. We derive them by interpreting the
resampling of a light sub-path from multiple pre-sampled light sub-
paths as a resampled importance sampling (RIS) process [Talbot 2005].
Our theoretical contribution resides in the precise formulation of
new RIS-based estimators for the pixel intensity, which we call re-
sampling estimators, and their variance based on this interpretation,
which allows us to derive the weighting functions.

The contributions of our method can be summarized as follows:

• we derive the resampling estimator and its variance based on
an interpretation of the generation of full paths in BPT as RIS
from multiple light sub-paths,
• we provide new weighting functions that can appropriately
handle the change in pdfs with respect to the number of
pre-sampled light sub-paths.

2 RELATED WORK
BPT is a robust light transport algorithm that samples paths by trac-
ing these from both the camera and the light source, and connecting
the vertices of the eye sub-path to those of the light sub-path [Lafor-
tune and Willems 1993; Veach and Guibas 1994, 1995]. Davidovič et
al. were the first to propose reusing light sub-paths in BPT within
a GPU implementation [Davidovič et al. 2014]. The full connected
paths in BPT, however, do not always have large contributions (e.g.,
the visibility between the vertices of an eye sub-path and a light
sub-path is not considered when connected).

To address this problem, Popov et al. [2015] proposed probabilis-
tic connections for bidirectional path tracing (PCBPT) that first
sample multiple light sub-paths shared by the eye sub-paths and
then resample a small number of connections through importance
sampling. Unfortunately, the MIS weighting functions proposed by
Popov et al. do not handle the change in pdfs caused by resampling,
making the combination of these multiple strategies inefficient. We
address this problem by deriving the variance for multiple light
sub-paths and weighting functions minimizing the upper bound of
variance.

Adaptive importance sampling methods also aim to generate im-
portant light paths by using precomputed radiance and importance
distributions. Vorba et al. [2014] represent directional sampling dis-
tributions using a Gaussian mixture model (GMM) for path guiding.
Herholz et al. [2016] extended Vorba’s method by representing the
product of the bidirectional scattering distribution function (BSDF)
and the directional distribution of radiance or importance as GMM.
Müller et al. [2017] proposed an adaptive spatio-directional tree
(SD-tree) to represent the incident radiance field for path guiding.
Recent advances in adaptive importance sampling have improved
the direct illumination computation for many lights [Estevez and
Kulla 2018; Vévoda et al. 2018]. Since our method does not impose
any restrictions on sub-path generation, adaptive importance sam-
pling methods (e.g., path guiding) can be combined with our method
as shown in Sec. 6.1.2.
Many-light rendering methods [Dachsbacher et al. 2014; Keller

1997] generate many light sub-paths but the length of each eye
sub-path is restricted to one. The last vertex of each eye sub-path is
connected to all the vertices of the many light sub-paths, resulting in
a prohibitive computation time. While efficient methods [Georgiev

et al. 2012b; Hašan et al. 2007; Walter et al. 2006, 2005] have been
proposed to accelerate many-light rendering by resampling a small
number of light sub-paths, these methods use only one path sam-
pling technique and suffer from splotches due to high variance. To
alleviate this problem, several methods relaxed the restriction on
the eye sub-path length and used multiple path sampling techniques
combined with MIS [Kollig and Keller 2004; Walter et al. 2012]. Since
they clamp splotches and suffer from energy loss due to clamping,
these methods derive MIS weights to compensate for the energy loss,
while our MIS weights are derived to minimize the upper bound of
variance.

Photon mapping (PM) also uses multiple light sub-paths where
the light sub-path vertices are called photons. In recent years, uni-
fied sampling methods [Georgiev et al. 2012a; Hachisuka et al. 2012]
that combine PM and BPT using MIS have been proposed to increase
robustness. Since our method is an extension of BPT, it can be com-
bined with PM by replacing BPT with our method as demonstrated
in Sec. 6.1.3.
Kondapaneni et al. [2019] derived optimal MIS weighting func-

tions by using negative weights. This method, however, requires
to solve the linear system whose computational cost grows super-
linearly with the number of sampling techniques. Karlík et al. [2019]
proposed a new technique called MIS-compensation that designs the
pdf of one sampling technique to reduce the variance. Grittmann
et al. [2019] presented variance-aware MIS weighting functions
that injects variance estimates into weighting functions and applied
them to BPT. Although these methods improve the efficiency and
the robustness of MIS, none of these methods have been applied to
BPT with multiple light sub-paths.

3 BACKGROUND

3.1 Resampled Importance Sampling
Talbot et al. introduced resampled importance sampling (RIS) to com-
puter graphics. This method can generate samples approximately
proportional to any target distribution [Talbot 2005]. Suppose we
want to estimate the integral I =

∫
Ω
f (x)dµ(x)where µ is a measure

in the integration domain Ω. The integrand f is well approximated
by a function q∗(x), which is not necessarily normalized. q(x) is the
probability density function (pdf) normalized by integrating q∗ over
Ω (i.e., q(x) = q∗(x)/

∫
Ω
q∗(x ′)dµ(x ′)), but it is difficult to sample

directly from q. We refer to q∗ and q as target distribution and target
pdf, respectively.
RIS first generates M proposals {X1, . . . ,XM } from the pdf p,

which is easy to sample. Then N samples {Y1, . . . ,YN } are drawn
from theM proposals using the probability proportional toq∗(Y )/p(Y )
(we follow the RIS algorithm in Talbot’s master thesis [Talbot 2005],
while another paper on RIS [Talbot et al. 2005] proposes a slightly
different algorithm that preparesM proposals for each sample Y ).
The RIS estimator Îr is [Talbot 2005, Eq. (4.1) on p. 29] is expressed
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by:

Îr is =
1
N

N∑
i=1

f (Yi )

q∗(Yi )
·

1
M

M∑
j=1

q∗(X j )

p(X j )
=

1
MN

N∑
i=1

f (Yi )

p(Yi )

©­­«
∑M
j=1

q∗(X j )

p(X j )

q∗(Yi )
p(Yi )

ª®®¬
=

1
MN

N∑
i=1

f (Yi )

p(Yi )Pr (Yi |{X1, . . . ,XM })
,

where Pr is the probability mass function (pmf) for sampling Yi
defined as:

Pr (Y |{X1, . . . ,XM }) =
q∗(Y )/p(Y )∑M

j=1 q
∗(X j )/p(X j )

. (1)

The variance of the RIS estimator V [Îr is ] is given by the following
equation: [Talbot 2005, Eq. (4.2) on p. 30]:

V [Îr is ] =
1
M
V

[
f

p

]
−

1
MN

V

[
f

q

]
+

1
N
V

[
f

q

]
. (2)

The above equation indicates that V [f /q] becomes dominant asM
increases. RIS can thus generate samples approximately proportional
to the pdf q, rather than p, for sufficiently largeM .

3.2 Multiple Importance Sampling in BPT
In the path integral formulation, the pixel measurement I is given
by:

I =

∫
Ω
f (x̄)dµ(x̄), (3)

where Ω is the space of the light paths and x̄ = x0 . . . xk is a light
path of length k ≥ 1, where the path vertices x0 and xk are on a light
source and the camera, respectively. dµ(x̄) = dA(x0) . . .dA(xk ) is
the differential area product and f is the measurement contribution
function as:

f (x̄) = Le (x0, x1)T (x̄)We (xk−1, xk ),

T (x̄) = GV (x0, x1)

[k−1∏
i=1

ρ(xi−1, xi , xi+1)GV (xi , xi+1)

]
,

where Le is the emittance,We is the pixel sensitivity, ρ is the BSDF,
andGV is the geometry term including the visibility. We summarize
our notation in Table 1.
MIS [Veach 1997] is an integral estimation method that uses

multiple sampling strategies. In BPT, each sampling strategy is
identified by a pair of non-negative integers (s, t); the sampling
strategy (s, t) connects the s-th vertex in a light sub-path to the
t-th vertex in an eye sub-path to create a full light path x̄ = ȳz̄ =
y0 . . .ys−1zt−1 . . . z0, where ȳ = y0 . . .ys−1 represents the light
sub-path and z̄ = z0 . . . zt−1 the eye sub-path. The pdf ps ,t (x̄) of
the full path is given by the product of those of the eye and the
light sub-paths, ps (ȳ) and pt (z̄), respectively. Using MIS, the pixel
measurement I can be estimated by:

I ≈
∑
s ,t

1
ns ,t

ns ,t∑
i=1

ws ,t (X̄s ,t ,i )
f (X̄s ,t ,i )

ps ,t (X̄s ,t ,i )
, (4)

wherews ,t is the weighting function, ns ,t the number of samples,
and X̄s ,t ,i the i-th path sample of the sampling strategy (s, t). The
key to the efficiency of MIS is that the weighting function affects

the variance, that is, large weights should be assigned to strategies
with low variance. The balance heuristic is the most widely-used
weighting function [Veach 1997]:

ws ,t (x̄) =
ns ,tps ,t (x̄)∑

s ′,t ′ ns ′,t ′ps ′,t ′(x̄)
. (5)

3.3 Probabilistic Connections for BPT (PCBPT)
PCBPT importance-samples connections between each vertex of
the multiple light sub-paths {ȳ1, ȳ2, . . .} and each vertex of the eye
sub-path z̄ to generate a full light path. To generate a full light path
with large contributions, the pmf Pr proportional to the contribution
f of the full light path is calculated as follows:

Pr (x̄ j ) =
f (x̄ j )/p(x̄ j )∑
i=1 f (x̄i )/p(x̄i )

=
fyz (ȳj , z̄)fy (ȳj )/p(ȳj )∑
i=1 fyz (ȳi , z̄)fy (ȳi )/p(ȳi )

,

where {x̄1, x̄2, . . .} is a set of potential full light paths that are gener-
ated by connecting each vertex of pre-sampled light sub-paths and
the eye sub-path z̄. The contribution f is decomposed into fz fyz fy
where fz and fy depend only on the eye sub-path and the light
sub-path respectively, and fyz depends on both the eye and light
sub-paths as:

fy (ȳ) = Le (y0,y1)GV (y0,y1)
s−2∏
i=1

ρ(yi−1,yi ,yi+1)GV (yi ,yi+1),

fyz (ȳ, z̄) = ρ(ys−2,ys−1, zt−1)GV (ys−1, zt−1)ρ(ys−1, zt−1, zt−2),

fz (z̄) =We (z0, z1)GV (z0, z1)
t−2∏
i=1

ρ(zi−1, zi , zi+1)GV (zi , zi+1).
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fz (z̄)/p(z̄) is canceled out in Pr (x̄ j ) since the eye sub-path z̄ is com-
mon. Instead of constructing pmfs for each eye sub-path vertex, they
are constructed on cache points that are distributed on the surface
of the scene, and those for each eye sub-path vertex are interpolated
by those stored at nearby cache points.
Importance sampling of connections for pre-sampled light sub-

paths in PCBPT can be interpreted as resampling from the proposals
in RIS. Specifically, the set of potential full light paths can be con-
sidered as the proposals in RIS, and the pmf for RIS is considered
to be the same as that of PCBPT when fy fyz is used as the target
distribution q∗. Resampling from the proposals causes changes to
the pdf, as explained in Sec. 3.1. However, PCBPT uses the sampling
pdf p of the light sub-paths for the weighting function [Popov et al.
2015, Eqs. (16) and (17)], rather than the pdf proportional to fy fyz ,
resulting in less efficient MIS weights. Thus, developing a weighting
function by a proper treatment of the changes to the pdf in the
resampling process remains a challenging problem.
We focus on developing the weighting functions to solve this

problem. Our method builds upon PCBPT that iteratively generates
full light paths. Although the resampling process of our method is
almost identical to that of PCBPT, our weighting functions yield
superior results as shown in Figs. 1, 2 and 4.
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Table 1. Notations and symbols. Subscripts i and j represent the index of
the sample. Subscripts s and t indicate the number of vertices for light and
eye sub-paths, respectively. Concatenations of variables for paths (e.g., ȳz̄ ,
ȳZ̄t ) indicate the full path connecting the last vertices of two paths.

symbol meaning
f measurement contribution function
x̄ full light path x0 . . . xk
ȳ, z̄ light sub-path and eye sub-path
Ȳs ,i i-th light sub-path sample with s vertices
Z̄t eye sub-path sample with t vertices
M number of light sub-path samples
N number of resampling light sub-paths per iteration

A, As , A scene surface, s-dimensional product of A, union of As
q∗(x̄) target distribution (a part of contribution function f )

q(x̄),qs (x̄) target pdfs (normalize q∗ over A and As )
Q , Qs normalization factors (integrate q∗ over A and As )

4 RESAMPLING-AWARE WEIGHTING FUNCTION
In this section, we develop resampling-awareweighting functions for
BPT using multiple light sub-paths, which can handle the change
made to the path pdf due to resampling of light sub-paths. We
explain the basic idea on how we derive the weighting function. A
detailed derivation is provided in the supplemental material.

We focus on developing the weighting functions for the sampling
strategy that connects an eye sub-path with t ≥ 2 vertices to a
light sub-path resampled from a pre-sampled set of light sub-paths.
The pixel measurement It for this sampling strategy corresponds to
contributions from all the paths having eye sub-paths with t vertices
and light sub-paths with arbitrary length. We refer to the estimator
for the pixel measurement It as resampling estimator. Other strate-
gies including the unidirectional sampling techniques (s = 0, t ≥ 2)
and (s ≥ 2, t = 0), and the light tracing (s ≥ 1, t = 1) are handled by
the traditional BPT, since the unidirectional sampling techniques do
not require connections and the light tracing is efficiently handled
by BPT.

4.1 The Resampling Estimator and Its Variance
In this section, we describe the RIS formulation of the resampling
estimator Ît and its varianceV [Ît ]. Ît is computed by generating eye
sub-paths with t(≥ 2) vertices connected to light sub-paths with
arbitrary length. For a given eye sub-path sample Z̄t with sampling
pdf p, It is estimated by integrating f weighted by the weighting
functionwt as follows:

Ît =
1

p(Z̄t )

∫
A

wt (ȳZ̄t )f (ȳZ̄t )dµ(ȳ),

where ȳ is an integral variable of light sub-paths, and ȳZ̄t is a full
light path by connecting the last vertices of the eye sub-path sample
Z̄t and the light sub-path ȳ. The integral domain A is defined as
A = ∪s≥1As , where As is the s-dimensional Cartesian product
over the scene surface A. It is estimated by partitioning the integral
domainA into each dimension As and generatingM light sub-path

samples from As as follows:

Ît =
1

p(Z̄t )

∑
s≥1

1
M

M∑
i=1

wt (Ȳs ,i Z̄t )f (Ȳs ,i Z̄t )

p(Ȳs ,i )
,

where Ȳs ,i is the i-th light sub-path sample with s vertices, Ȳs ,i Z̄t is
a potential full light path connecting Ȳs ,i and the eye sub-path Z̄t .
In the context of BPT with multiple light sub-paths, we have a

pre-sampled set of light sub-paths, which is constructed by tracing
M light sub-paths from the light sources. Each of the paths as well
as its sub-paths are included in the pre-sampled set.1 We represent
a proposal for RIS by a light sub-path Ȳs ,i and represent the set of
proposals Ȳ = {Ȳ1,1, . . . , Ȳs ,i , . . .}. By drawing N samples from the
set, the resampling estimator Ît is given by:

Ît =
1

MN

N∑
j=1

wt (Ȳj Z̄t )f (Ȳj Z̄t )

p(Ȳj )p(Z̄t )Pr (Ȳj |Ȳ)
, (6)

Pr (Ȳj |Ȳ) =
q∗(Ȳj Z̄t )/p(Ȳj )∑

s≥1
∑M
i=1 q

∗(Ȳs ,i Z̄t )/p(Ȳs ,i )
, (7)

where Ȳj is the j-th light sub-path sample resampled from the set Ȳ,
and Pr is referred to as resampling pmf. The conditional variance
of the resampling estimator V Ît |Z̄t is expressed by the following
equation (the derivation is shown in Sec. 1 of the supplemental
document):

V
[
Ît |Z̄t

]
=

1
M

∑
s≥1

V

[
wt f

p
|Z̄t

]
−

1
MN

∑
s≥1

V

[
wt f

qs
|Z̄t

]
+

1
N
V

[
wt f

q
|Z̄t

]
,

(8)

where q and qs are the target pdfs normalized by integrating the
target distribution q∗(x̄) over A and As , respectively. Please note
that the above varianceV [Ît |Z̄t ] with no partitioning (i.e., s = 1 and
qs = q) matches the variance of the ordinary RIS in Eq. (2).

We now derive the variance V [Ît ] from V [Ît |Z̄t ] by considering
the randomness of the eye sub-path Z̄t (i.e., considering both Ît and
Z̄t as random variables). The varianceV [Ît ] is calculated by the law
of total variance V [Ît ] = E[V [Ît |Z̄t ]] +V [E[Ît |Z̄t ]] as follows (the
derivation is shown in Sec. 2 of the supplemental document):

V
[
Ît

]
=

1
M

∑
s≥1

V

[
wt f

p

]
−

1
MN

∑
s≥1

V

[
wt f

qs

]
+

1
N
V

[
wt f

q

]
+

(
1 −

1
N

)
V

[
1

p(Z̄t )

∫
A

wt (ȳZ̄t )f (ȳZ̄t )dµ(ȳ)

]
−

1
M

(
1 −

1
N

) ∑
s≥1

V

[
1

p(Z̄t )

∫
As

wt (ȳZ̄t )f (ȳZ̄t )dµ(ȳ)

]
. (9)

To derive the weighting functions, we use the same derivation
technique of the balance heuristic [Veach 1997, p. 288] that makes
use of the fact that the weight of a path wt (ȳZ̄t ) is independent
of the weights of other paths wt (ȳ

′Z̄t ). However, in our case, the
variance terms including integrals cause additional dependencies
between the paths. While one could simply ignore these terms, the
resulting weights would be far from optimal. Our solution is to set
1For example, when the i-th light sub-path Ȳi traced from a light source consists of
three vertices, Ȳi = y0y1y2 , we include three light sub-paths, Ȳ1,i = y0 , Ȳ2,i = y0y1 ,
and Ȳ3,i = y0y1y2 in the pre-sampled set.
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the number of resampling light sub-path samples N to one. This
causes these dependencies to vanish, and we obtain:

V
[
Ît

]
=

1
M

∑
s≥1

V

[
wt f

p

]
−

1
M

∑
s≥1

V

[
wt f

qs

]
+V

[
wt f

q

]
. (10)

Although only one light sub-path from the pre-sampled light sub-
paths is sampled, our method iteratively generates eye sub-paths
and multiple light sub-paths to estimate the pixel measurement I .
Therefore, the variance of the pixel measurement decreases inversely
proportional to the number of iterations. Hereinafter, we focus on
deriving the variance V [Î ] at each iteration.

4.2 MIS Weighting Function
We derived our weighting function by reducing the variance V [Î ]
that includesV [Ît ] in Eq. (10) and the variance terms for other strate-
gies (i.e., unidirectional sampling and light tracing). To generate
a path with length k , there are k + 2 strategies and each strategy
can be identified by the number of eye sub-path vertices t . The
strategies with t = 2, . . . ,k are handled by our method, and the
other three strategies with t = 0, 1,k + 1 are handled by BPT. We
define ΛI S = {0, 1,k + 1} and ΛRIS = {2, . . . ,k} to represent these
two types of strategies.
Similar to the balance heuristic, instead of minimizing the vari-

ance V [Î ] = E[Î2] − E[Î ]2 itself, we consider the second moment
E[Î2] as the upper bound of variance V [Î ] and minimizes the upper
bound as:∑
t ∈ΛRIS

(
1
M

E

[
w2
t f

2

p2

]
−

1
M

E

[
w2
t f

2

q2
s

]
+E

[
w2
t f

2

q2

])
+

∑
t ∈ΛI S

1
Nt

E

[
w2
t f

2

p2

]
,

where Nt is the number of samples for BPT with strategy t , and
the summation over s vanishes since s is uniquely determined as
s = k + 1 − t for a path x̄ with length k . We focus on a single light
path x̄ and drop f 2(x̄) from the upper bound since f (x̄) is constant
for all strategies. This leads to the following for the upper bound as:∑

t ∈ΛRIS

(
1
M

w2
t (x̄)

p(x̄)
−

1
M

w2
t (x̄)

qs (x̄)
+
w2
t (x̄)

q(x̄)

)
+

∑
t ∈ΛI S

1
Nt

wt (x̄)
2

p(x̄)
,

subject to the condition
∑k+1
t=0 wt = 1. To further simplify the upper

bound, we define the normalization factors2 Q andQs for the target
distribution q∗ as:

Q =

∫
A

q∗(x̄)dµ(ȳ), Qs =

∫
As

q∗(x̄)dµ(ȳ). (11)

By using Q and Qs , the following relation between the pdfs qs and
q holds:

qs (x̄) =
q∗(x̄)∫

As q
∗(x̄)dµ(ȳ)

=
q∗(x̄)∫

A
q∗(x̄ ′)dµ(ȳ′)

·

∫
A
q∗(x̄ ′)dµ(ȳ′)∫

As q
∗(x̄)dµ(ȳ)

= q(x̄) ·
Q

Qs
,

2When the contribution fy fyz is used as the target distribution q∗ , the normalization
factor Q is the radiance at the connection vertex zt−1 towards zt−2 , and Qs is the
fraction of the radiance due to light sub-paths with s vertices.

By substituting this relation, the variance bound simplifies to:∑
t ∈ΛRIS

(
1
M

1
p(x̄)

+

(
1 −

1
M

Qs
Q

)
1

q(x̄)

)
wt (x̄)

2 +
∑

t ∈ΛI S

1
Nt

wt (x̄)
2

p(x̄)
.

To unify the notation, we define the following function pris:

pris(x̄) =

(
1
M

1
p(x̄)

+

(
1 −

1
M

Qs
Q

)
1

q(x̄)

)−1
.

Then the bound simplifies to
∑k+1
t=0 w

2
t (x̄)/ntpt (x̄), wherent denotes

the sample count and pt is the associated density:

nt =

{
1 (t ∈ ΛRIS )

Nt (t ∈ ΛI S )
, pt (x̄) =

{
pris(x̄) (t ∈ ΛRIS )

p(x̄) (t ∈ ΛI S )
. (12)

Using these definitions, we are able to use the balance heuristic [Veach
1997, p. 289]:

wt (x̄) =
ntpt (x̄)∑k+1
i=0 nipi (x̄)

. (13)

The key difference to the balance heuristic used in BPT and PCBPT
is that the density pris explicitly accounts for the resampling step.

To use the weighting function, two normalization factors Q and
Qs are required. Although these normalization factors can be esti-
mated using Monte Carlo methods, we cannot keep all the values
of Qs for arbitrary non-negative integers s . Fortunately, the value
Qs/Q is bound between zero and one, since the integral over A
is the sum of all the integrals over As . We approximate the value
by the upper bound, i.e., one, assuming that the parameter M is
sufficiently large. In summary, pris(x̄) is calculated by:

pris(x̄) =

(
1
M

1
p(x̄)

+

(
1 −

1
M

)
1

q(x̄)

)−1
. (14)

This function has the desired property thatpris approaches the target
density q(x̄) asM increases.

4.3 Target Distribution q∗ and Target Pdf q
To use the density pris and the resampling pmf Pr in Eq. (7), we need
an actual form of the target distribution q∗ and its pdf q. Similar to
PCBPT, we approximate the resampling pmf Pr at each eye sub-path
vertex with that computed for the closest cache point for efficiency.
Our target distribution, which we design conservatively to reduce
the error caused by this approximation, is:

q∗(x̄) = q∗(ȳ, zt−1) = fy (ȳ)ρ(ys−2,ys−1, zt−1)GV (ys−1, zt−1).
(15)
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Although PCBPT uses fy fyz to construct the resampling pmf Pr ,
the BSDF ρ at the eye sub-path vertex zt−1 in fyz can be significantly
different from that at the closest cache point of zt−1 (e.g., zt−1 is
on a highly glossy material while the cache point is on a diffuse
material). Therefore, we ignore the BSDF at the eye sub-path vertex
zt−1 in the target distribution q∗. The target pdf q(x̄) is calculated
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Our method PCBPT

M = 102 M = 104 M = 102 M = 104

MAPE : 16.9% 13.0% (0.77x) 28.2% 28.3% (1.00x)

0.440 0.463 0.171 0.171 0 1

Fig. 2. Comparison between our weighting functions and those used in
PCBPT [Popov et al. 2015] in equal-iteration (16) rendering. The relative
contributions of t = 2 strategy (

∫
Ω
w2(x̄ )f (x̄ )dµ(x̄ )/

∫
Ω
f (x̄ )dµ(x̄ )) for our

method and PCBPT are shown in the second row in false color. As the
number of the pre-sampled light sub-paths M increases from 102 to 104,
the relative contribution for t = 2 increases and the MAPE decreases in our
method as shown in the MAPE improvement (in parenthesis), while those
do not change in PCBPT.

by the product of the target distribution q∗(x̄) normalized by the
normalization factor Q (Eq. (11)) and the pdf of the eye sub-path as:

q(x̄) =
q∗(ȳ, zt−1)

Q
p(z̄) =

q∗(ȳ, zt−1)∫
A
q∗(ȳ′, zt−1)dµ(ȳ′)

p(z̄) = q(ȳ |zt−1)p(z̄)

= q(x0 . . . xs−1 |xs )p(xs . . . xk ), (16)

where the full light path x̄ consists of the light sub-path ȳ and the eye
sub-path z̄ as x̄ = ȳz̄ = y0 . . .ys−1zt−1 . . . z0 = x0 . . . xs−1xs . . . xk .

4.4 Discussion
We now discuss the relationship between our resampling-aware
weighting functions and those used in PCBPT, and compare the ef-
fects of weighting functions using different numbers of pre-sampled
light sub-paths M . Our resampling-aware weighting functions sub-
sume the weighting functions used in PCBPT. That is, the weighting
functions of PCBPT are represented by using pt (x̄) = p(x̄) for all
strategies in Eq. (12). In other words, the weighting functions of
PCBPT are a special case of our weighting functions using the den-
sity pris(x̄) withM = 1 in Eq. (14). This indicates that the weighting
functions of PCBPT are unaware of the change of the pdf due to
resampling and do not benefit from the increase in the number of
pre-sampled light sub-pathsM , while our resampling-aware weight-
ing functions can handle the change of the pdf by blending the
sampling pdf p and the target pdf q where the reciprocal of the
number of pre-sampled light sub-pathsM acts as an interpolation
factor.

Fig. 2 shows an equal-iteration comparison between the weights
of our method and PCBPT using different numbers of pre-sampled
light sub-paths M (M = 102 and M = 104). To equalize the target
distribution between PCBPT and ours, q∗ = fy fyz is used for our
method in this comparison while Eq. (15) is used in other results.
Our weighting functions considerably reduce the variance com-
pared with those used in PCBPT. The bottom row visualizes the
relative contributions of the t = 2 strategy for our method and
PCBPT, respectively. Our method assigns larger weights to the t = 2
strategy than PCBPT does, resulting in considerably reduced noise.

Algorithm 1 Our rendering algorithm. Our rendering algorithm
builds upon PCBPT and differences between PCBPT and ours are
highlighted as underlines. Note that the pseudocode for the weight-
ing functionwt (lines 16-22) is a proof of concept. Our implemen-
tation uses more efficient recursive formulations to compute wt .
Please see our sample code for details.

1: for n← 1 to maxIterations do
2: generate Ȳn by tracingM paths from light sources
3: generate cache points
4: for each cache point c do
5: calculate resampling pmf Pr using q∗ ▷ Eqs. (15)(17)
6: estimate Q using Ȳn−1
7: normalize target distribution q∗/Q ▷ Eq. (16)

8: for each pixel do
9: generate one light sub-path and one eye sub-path z̄
10: calculate estimators for other strategies using BPT
11: for each vertex of z̄ with (t ≥ 2) do
12: find the nearest cache point ct
13: resample light sub-path ȳ from Ȳn using cached Pr
14: //calculate resampling estimator Ît
15: generate a full path x̄ = y0 . . .ys−1zt−1 . . . z0
16: //calculate resampling-aware weighting functionwt
17: wt ←

∑
i ∈ΛI S nipi (x̄)

18: for i ← 2 to k do ▷ i ∈ ΛRIS
19: find the nearest cache point ci for xk−i+1
20: calculate q(x̄) using cached q(x0 . . . xk−i |ci )

21: wt ← wt + pris(x̄) ▷ Eq. (14)

22: wt ← ntpt (x̄)/wt ▷ Eq. (13)
23: calculate Ît usingwt and cached Pr ▷ Eq. (6)
24: update pixel intensity using Ît and other estimators

Moreover, as shown in the third column (M = 104), our weighting
functions assign more weight to the resampling strategies whose
variance decreases asM increases, but the improvement in PCBPT is
subtle because the weighting functions for the resampling strategies
remain unchanged.

5 IMPLEMENTATION DETAILS

5.1 Rendering Algorithm
Algorithm 1 summarizes our rendering approach. Our method ren-
ders an image by iteratively updating the pixel intensities. At each
iteration n, we first generate a pre-sampled set Ȳn of light sub-paths,
which is constructed by tracing M paths from the light sources.
Next, a set of cache points is generated on the surface of the scene.
For each cache point c , the resampling pmf Pr is calculated (line 5),
the normalization factor Q (Eq. (11)) is estimated (line 6), and the
conditional pdf in Eq. (16) is calculated (line 7).

Calculation of the resampling pmf Pr . By using the target distri-
bution q∗ in Eq. (15), the resampling pmf Pr in Eq. (7) for a given
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eye sub-path sample Z̄t is rewritten as:

Pr (Ȳj |Ȳ) =
q∗(Ȳj , zt−1)/p(Ȳj )∑

s≥1
∑M
i=1 q

∗(Ȳs ,i , zt−1)/p(Ȳs ,i )
. (17)

Since the resampling pmf Pr in Eq. (17) now depends only on the po-
sition of the t-th eye sub-path vertex zt−1 and the set of pre-sampled
light sub-paths, our method calculates the resampling pmf Pr at
each cache point c (by substituting c for zt−1 in Eq. (17)).

Estimation of the normalization factorQ .We estimate the normaliza-
tion factorQ at each cache point to normalize the target distribution
q∗. One simple way is to use the light sub-paths in the pre-sampled
set Ȳn at each iteration n, which are used to estimate the contribu-
tion function f . However, the error does not decrease linearly in
log-scale as shown in Fig. 3. Since the estimate of Q is a random
variable, our resampling-aware weighting functionwt is also a ran-
dom variable. Then the contribution f and the weighting function
wt must be estimated independently, since the expected value of
the product of two random variables is equal to the product of the
expected values only if those random variables are uncorrelated.
We thus simply use light sub-paths generated in the previous

iteration, Ȳn−1, for estimating the normalization factor Q at the
current iteration. Since pre-sampled sets Ȳn and Ȳn−1 are indepen-
dently generated, the MAPE for using the light sub-paths in the
previous iteration Ȳn−1 converges as shown in Fig. 3(a). However,
the positions of the cache points are different between the current
and the previous iterations. We thus use the average of Q estimated
at the nearby Nq cache points in the previous iteration. The only
exception is the first iteration; we estimate the normalization factor
Q using the set of pre-sampled light sub-paths in the first iteration
Ȳ1. This causes bias, but its influence is quickly reduced as the num-
ber of iterations increases.

Normalization of the target distribution q∗. By using the estimate of
the normalization factor Q , the target pdf in Eq. (16) at the cache
point c is calculated by substituting c for xs in the conditional pdf
as q(x0 . . . xs−1 |c)p(xs . . . xk ). If the normalization factor Q is se-
verely underestimated, the target pdf q is overestimated, resulting
in assigning large weights to strategies with high variance. To ad-
dress this problem, we clamp the lower bound of the ratio of pdfs
p(x0...xs−1)/q(x0...xs−1 |c) by a clamping parameter ϵ (10−3 is used
in all examples).

Estimation of the pixel intensity I . Our method traces eye sub-paths
for each pixel (line 9) to estimate the pixel intensity I . Our method
traces one light sub-path that is used for other strategies (e.g., uni-
directional path tracing) handled by BPT (line 10). For each vertex
zt−1(t ≥ 2) of the eye sub-path, nearest cache point ct is searched
and a light sub-path is resampled using the resampling pmf Pr
stored at the cache point ct (lines 12-13). Our method calculates the
resampling estimator Ît (Eq. (6)) using the resampled light sub-path
(lines 14-23). The weighting functionwt (Eq. (13)) in the resampling
estimator Ît involves the computation of the density pris in Eq. (14)
and the target pdf q(x̄) (lines 20-21). Our method approximates the
conditional pdf q(x0 . . . xs−1 |xs ) in Eq. (16) with q(x0 . . . xs−1 |ct ),
as our method uses the resampling pmf Pr at the cache point ct .

(a)

M
A

P
E

(%
)

101 102 103 104

102

101

100

time [s]

using previous set of light sub-paths 

using current set of light sub-paths

(b)

(c)
MAPE : 1.7%

MAPE : 7.0%

(d) difference (+EV4)

Fig. 3. (a) Log-log mean absolute percentage error (MAPE) plots using
different pre-sampled sets of light sub-paths to estimate the normalization
factorQ , (b) the set of pre-sampled light sub-paths in the previous iteration
Ȳn−1 (solid line) and (c) that in the current iteration Ȳn (dot line). (d) The
difference (+EV4) between (b) and (c). Using the set of pre-sampled light
sub-paths in the current iteration Ȳn , the MAPE does not decrease linearly
in log-log plot (dot line).

Computation of the resampling-aware weighting function wt . The
computation of the weighting functionwt (x̄) in Eq. (13) involves the
evaluations of the densities pi (x̄) for all k +2 strategies of a full light
path x̄ with length k (line 18). This indicates that the evaluations
of the target pdf q are required for (k − 1) resampling strategies in
ΛRIS = {2, . . . ,k}. Our method approximates each target pdf with
that evaluated at each nearest cache point. Therefore, our method
incurs (k −1) times searches for nearest cache points to compute the
weighting functionwt (x̄) (line 19). We discuss the computational
overhead due to our weighting functions in Sec. 6.2.

5.2 Multiple Cache Points
So far, we have described our resampling scheme for the case in
which the closest cache point is used, but this might cause important
light sub-paths to be missed due to the difference in the target
distribution q∗ between the eye sub-path vertex and the cache point.
We solve this problem by using the closest Nc cache points and one
additional cache point called the virtual cache point. The virtual
cache point stores a uniform distribution for resampling in the same
way as conservative sampling [Georgiev et al. 2012b]. We first select
one cache point from among the (Nc +1) cache points using the pmf
Pc (currently we use Pc (i) = 1/(Nc +1)), and then resample one light
sub-path using the resampling pmf Pr stored at the selected cache
point. Since this adds another source of randomness, the resampling
estimator Ît and the density pris need slight modifications as follows:

Ît =
1
M

wt (Ȳ Z̄t )f (Ȳ Z̄t )

p(Ȳ )p(Z̄t )Pr (Ȳ |Ȳ)
·
pris,i(Ȳ Z̄t )

pris(Ȳ Z̄t )
,

pris(x̄) =
Nc+1∑
i=1

Pc (i)pris,i(x̄),

where Ȳ is a light sub-path resampled from the set Ȳ, and i is the
index of the selected cache point using the pmf Pc . pris,i(x̄) is calcu-
lated by Eq. (14) using the i-th closest cache point.
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6 RESULTS AND DISCUSSION
In this section, first, we show comparisons between our method
and previous methods (BPT and PCBPT) including combinations
with the path guiding method [Vorba et al. 2014] and progressive
photon mapping (PPM) [Hachisuka et al. 2008], and then we discuss
the limitations of our method. Please see ’comparisons.html’ in the
supplemental material for the enlarged side-by-side comparisons.

6.1 Comparison to BPT and PCBPT
We compare our method with BPT and PCBPT in Figs. 1 and 4(a)(b),
and show comparisons between our method combined with comple-
mentary algorithms (i.e., path guiding and PPM) and BPT/PCBPT
with those algorithms in Fig. 4(c)(d). All these methods are imple-
mented using our CPU ray tracer and all images are rendered on a
PC with an Intel Core i9-7980XE CPU.
We generate cache points in the same way as PCBPT. 0.4% ×

W ×H eye sub-paths are generated, whereW and H are the width
and height of the image, and the vertices of the eye sub-paths are
considered as cache points. The resolution of all images is 1280×720.
The number of cache points for resampling, Nc , and that for the
estimation of the normalization factor Q , Nq , are set to three. The
clamping parameter ϵ is set to 10−3. The number of light sub-paths
M is 200. These values were determined experimentally as discussed
in Sec. 6.1.5. We use the same target distribution of Eq. (15) for our
method and PCBPT in all figures (except for Fig. 2), since we found
that the target distribution used in PCBPT (i.e., q∗ = fy fyz ) makes
the estimation of the normalization factor Q slightly unstable in
our experiments. We show the rendering results of our method and
PCBPT using the target distribution of PCBPT in the supplemental
material.
Fig. 1 shows a Classroom scene illuminated by an environment

map and area light sources on the ceiling. In this scene, the area
light sources are located in the classroom and the hallway. Fig. 4(a)
shows a Sponza scene illuminated by an environment map with high
directionality. In this scene, a fraction of light enters the scene from
the top of the building. Fig. 4(b) shows a Door scene illuminated
by an area light source. The area light source is located in the next
room, and light enters the room through a small slit in the door. The
material of the floor is semi-glossy. Fig. 4(c) shows a Bedroom scene,
where the generation of full paths is difficult due to the small gaps
in the curtains. Fig. 4(d) shows a House scene mainly illuminated
from light sources in the house.
Fig. 5 shows the convergence graphs of the mean absolute per-

centage error (MAPE) for BPT, PCBPT, and our method. According
to the paper [Popov et al. 2015], the number of light sub-paths used
in PCBPT is set to 100. For a fair comparison to PCBPT, the con-
vergence graphs of our method with M = 100 are also shown in
Fig. 5. As shown in all the graphs, our method outperforms BPT
and PCBPT in terms of reducing the noise and MAPEs. MAPEs for
our method withM = 100, however, do not decrease monotonically,
though it eventually converges. On the other hand, our method with
M = 200 provides stable noise reduction as shown in the conver-
gence graphs. Details and experiments on differentM are discussed
in Sec. 6.1.5.

6.1.1 Discussion. As shown in these experiments, our method can
greatly reduce the noise compared to BPT and PCBPT. Our method
with M = 200 converges (a) 3.05, (b) 2.58, (c) 1.48, (d) 2.37, and (e)
1.37 times faster than PCBPT. Although our method outperforms
BPT and PCBPT, it also uses the same strategies as BPT (e.g., unidi-
rectional path tracing (s = 0, t ≥ 2)), which do not benefit from the
use of multiple light sub-paths. Therefore, when the contributions
corresponding to those strategies are dominant, our method cannot
get a performance gain due to the overhead for the high compu-
tation required for the weighting functions, which decreases the
number of possible iterations in our method for the equal-time com-
parison. The smaller number of possible iterations is problematic
for the case in which all the vertices on the full path are on specular
materials or highly glossy materials.

6.1.2 Combination with path guiding. Our method can be combined
with path guiding as shown in Fig. 4(c). Eye sub-paths and light
sub-paths are generated by using path guiding. The online learning
of GMM in the training phase is the same as path guiding, and the
pdfs associated with the eye sub-paths and the light sub-paths are
replaced with those calculated from GMM. Fig. 4(c) shows equal-
time (10 min) comparisons of a Bedroom scene. As shown in Fig. 4(c),
our method with path guiding outperforms BPT and PCBPT, which
are also combined with path guiding.

6.1.3 Combination with PPM. Our method can be combined with
PPM by using the unified sampling methods [Georgiev et al. 2012a;
Hachisuka et al. 2012] as shown in Fig. 4(d). Since our method
cannot handle connections to vertices on light sub-paths on specular
surfaces similar to BPT and PCBPT, combining our method with
PPM makes our rendering algorithm more robust. When combined
with PPM, the strategies for PPM are added, and the pdf for vertex
connection in theweighting function (Eq. (10) in the paper [Georgiev
et al. 2012a]) is replaced with pt in our method. Our method ignores
the correlation in PPM and treats PPM as an additional uncorrelated
technique. As shown in the insets for BPT and PCBPT, white spots
are obvious, which may result from the assignment of large weights
to the strategies for PPM, while our weighting function can alleviate
the appearance of these white spots. As shown in Figs. 4(c) and (d),
our method is a good alternative to BPT when combined with path
guiding and PPM.

6.1.4 Comparison with path guiding. Fig. 8 shows equal-time com-
parisons (1 min for the Door scene and 10 min for the Bedroom
scene, and both scenes have difficult visibilities) between ourmethod
without path guiding and BPT with path guiding [Vorba et al. 2014]
which is also a caching-based solution. While our method yields
smaller MAPEs than path guiding in the Door scene, path guiding
is more efficient in the Bedroom scene since it includes the specular
surfaces. There is a noticeable noise on the specular surface of the
closet in the Bedroom scene, where our method has difficulties in
handling such materials. However, as shown in Fig. 4(c), this noise
can be reduced considerably by combining our method with path
guiding.

6.1.5 Parameter selection. We evaluate the effects of the three pa-
rameters used in our method: the number of light sub-pathsM , the
number of resampling light sub-path samples N , and the number of
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Fig. 4. Equal-time comparison between BPT, PCBPT, and our method for (a) Sponza, (b) Door, (c) Bedroom, and (d) House scenes. Sponza and Door scenes are
rendered in 1 min and Bedroom and House scenes are rendered in 10 min. Bedroom scene is rendered using each method with path guiding, and House scene
is rendered using each method with PPM. The insets show the absolute percentage errors with false color. Our method can provide superior results than BPT
and PCBPT.
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Fig. 5. Convergence graphs of MAPEs for (a) classroom (b) sponza (c) door (d) bedroom and (e) house scenes. Our method with M = 100 outperforms BPT and
PCBPT, but the convergence graphs do not decrease monotonically, especially pronounced in (b). Our method with M = 200 provides stable noise reduction
and the convergence graphs approach the straight lines similar to BPT.

nearest cache points Nc .

Number of light sub-paths M : Fig. 6 shows (a) MAPEs and (b)
iteration counts in equal-time rendering (10 min) of all the scenes
with various M . As M increases, the distribution of the path and
pris approach the target pdf q(x̄) that takes into account the con-
nections between eye and light sub-paths, resulting in lower noise.
However, it also increases the computational cost of the resampling
pmf Pr , which involves evaluating the visibility term, and decreases
the possible iteration counts as shown in Fig. 6(b). Fig. 7 shows
convergence graphs with various M . For small M , MAPEs do not
decrease monotonically and undulation can be seen. This is due to

the effect of light sub-paths with high contribution. If a light sub-
path with (extremely) high contribution is generated, this affects
all the pixels in the image since our method shares light sub-paths
with all eye sub-paths. On the other hand, the generation of light
sub-paths with high contribution is alleviated for large M and the
convergence graphs approach straight lines as shown in Figs. 7(d)
and (e) at the cost of high computational overhead to construct the
resampling pmf Pr . We found thatM = 200 achieves a good balance
between the stable noise reduction and the overhead of constructing
the resampling pmf Pr .

Number of samples N : In Sec. 4, we have selected the number
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Fig. 6. (a) MAPEs and (b) iteration counts of the five scenes for M =

50, 100, 200, 400 and 800. The computational time is fixed to 10 min. Al-
though the best performance depends on the scene, M = 200 works fine in
most scenes.

of samples N = 1 to derive the weighting functions. We compare
MAPEs between our weighting functions and those derived by
ignoring the variance terms of integrals (without setting N to 1).
Fig. 9 shows the graphs of MAPEs and iteration counts in equal-time
rendering (10 min) for various N . Although the best performance
depends on the scene, small N yields lower variance and large N
impairs the reduction in variance due to the small number of pos-
sible iterations. In some scenes, N = 2 yields smaller MAPEs than
N = 1 (e.g., in Sponza scene, MAPEs for N = 1 and N = 2 are
7.97% and 6.78%, respectively). This is because the computational
cost to construct resampling pmfs is dominant and that to sample
multiple (N > 1) light sub-paths at each iteration is much smaller,
thusN = 2 can sample more light sub-paths in equal-time rendering.
However, we used N = 1 in all the examples since the difference
of MAPEs between N = 1 and N = 2 is subtle and using larger N
definitely reduces the possible iteration counts, which is problem-
atic as discussed in Sec. 6.1.1. This is pronounced in the Bedroom
scene (MAPEs for N = 1 and N = 2 are 12.98% and 14.19%, re-
spectively) where the effects of light paths that our method cannot
improve (i.e., all the vertices are on specular materials) are dominant.

Number of nearest cache points Nc :We evaluated the effects of
Nc by rendering the Sponza scene in 1 min. MAPEs for Nc = 1, 3, 5
are 23.2%, 21.0%, and 22.8%, respectively. The iteration counts for
Nc = 1, 3, 5 are 71, 57, and 47, respectively. Although our method
selects and uses only one cache point from Nc + 1 cache points, Nc
affects the computation of the density pris, and the increase in the
number of closest cache points incurs a computational overhead,
resulting in lower performance.

6.2 Discussion, Limitation, and Future Work
Although our method can accelerate the rendering by caching the
resampling pmfs, it also inherits the drawbacks of caching. That
is, in regions where the target distribution q∗ varies considerably,
q∗ in the closest cache point is not a good approximation for that
in a vertex of the eye sub-path. This is problematic in handling
highly glossy materials. Due to this, our method does not include
BSDF at the last vertex of the eye sub-path in the target distribution
q∗. Since the target distribution q∗ also varies considerably due
to changes in visibility, noise increases around the boundaries of

shadows. Effective cache points may not be obtained due to the
sparse distribution of the cache points (e.g., regions far from the
camera) even though q∗ varies smoothly.
Besides the above drawbacks intrinsic to cache based methods,

our weighting functions incur high computational costs compared to
those of BPT. Our weighting functions require searching for neigh-
boring cache points not only for vertices on eye sub-paths but also
those on light sub-paths. In our current implementation, the com-
putational time for the search takes up to 22% of the total rendering
time. To calculate the weighting functions for a path with length k ,
Nc (k − 1) times computations of the pdf q are needed. Fig. 10 shows
the failure case. Our method is inferior to BPT for simple scenes
such as a Cornell-box due to the relatively high computational cost
of calculating the weighting functions.

The limitations of our method come from the use of cache points.
In future work, we would like to develop an efficient resampling
method without caching, which can avoid costly nearest neighbor
searches for cache points, resulting in accelerated computation of
the weighting functions.

7 CONCLUSION
We have proposed new weighting functions for BPT with multiple
light sub-paths. We interpret probabilistic connections of an eye
sub-path and a light sub-path from multiple light sub-paths as re-
sampling importance sampling. This interpretation enables us to
derive a novel resampling estimator and a precise formulation of its
variance. Our resampling-aware weighting functions are derived by
minimizing the upper bound of variance and can appropriately han-
dle the change in the pdfs of light sub-paths due to resampling. We
have shown that our weighting functions can significantly reduce
the noise compared to BPT and PCBPT.
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