
Spherical Lighting with Spherical Harmonics Hessian
KEI IWASAKI, Saitama University, Japan and Prometech CG Research, Japan
YOSHINORI DOBASHI, Hokkaido University, Japan and Prometech CG Research, Japan

In this paper, we introduce a second-order derivative of spherical harmonics,
spherical harmonics Hessian, and solid spherical harmonics, a variant of spher-
ical harmonics, to the computer graphics community. These mathematical
tools are used to develop an analytical representation of the Hessian matrix
of spherical harmonics coefficients for spherical lights. We apply our analytic
representation of the Hessian matrix to grid-based SH lighting rendering
applications with many spherical lights that store the incident light field
as spherical harmonics coefficients and their spatial gradient at sparse grid.
We develop a Hessian-based error metric, with which our method automati-
cally and adaptively subdivides the grid whether the interpolation using the
spatial gradient is appropriate. Our method can be easily incorporated into
the grid-based precomputed radiance transfer (PRT) framework with small
additional storage. We demonstrate that our adaptive grid subdivided by us-
ing the Hessian-based error metric can substantially improve the rendering
quality in equal-time grid construction.
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1 Introduction
Spherical harmonics (SH) are indispensable mathematical tools for
representing signals defined on the unit sphere, playing a crucial
role in computer graphics. SH possess several nice properties, es-
pecially for rendering applications. They allow for the efficient
representation and manipulation of functions over the sphere due
to their compactness and orthogonality. In rendering, spherical har-
monics are particularly useful for approximating illumination, such
as environment maps or diffuse lighting. Their ability to encode
low-frequency details with relatively few coefficients makes them
well-suited for real-time and precomputed rendering techniques.

Physically-based rendering often requires the integral of spheri-
cal functions over specific domains. For example, reflected radiance
from direct illumination of spherical lights or polygonal lights in-
volves the integration of cosine-weighted Bidirectional Reflectance
Distribution Function (BRDF) over spherical domains or polygonal
domains. To compute such integrals, traditional rendering methods
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mainly rely on Monte-Carlo integration at the cost of introducing
noise as a variance.
Recent advancements in SH lighting have shown that SH have

closed-form solutions of the integral over spherical/polygonal do-
mains [Belcour et al. 2018; Wang and Ramamoorthi 2018]. Further-
more, analytic representation of the spatial gradient of SH coeffi-
cients have also been proposed [Mézières et al. 2022; Wu et al. 2020].
These abilities promote the application of SH lighting to many light
rendering that accumulates the SH coefficients and their spatial
gradient at grid points. The incoming illumination at points to be
shaded (referred to as shading points) is then interpolated by using
the accumulated SH coefficients and gradients. While these methods
achieve significant speed-ups for scenes with many lights, previous
methods [Mézières et al. 2022; Wu et al. 2020] use uniform grids to
store SH coefficients and gradients and are unaware of the interpo-
lation errors. Uniform grids can over-subdivide regions with small
interpolation errors (e.g., regions far from area lights), leading to
unnecessary computational overhead, and under-subdivide regions
with significant errors, leading to visible artifacts. Therefore, devel-
oping a mathematical tool to estimate the interpolation errors for
SH lighting is desirable.
This paper introduces two mathematical tools to the computer

graphics community, spherical harmonics Hessian and solid spherical
harmonics (SSH). SSH are identical to SH when evaluated for unit
directions that are practical use cases in rendering applications. SSH
are represented with homogeneous polynomials of the Cartesian
coordinates whose first and second derivatives can be derived easily.
These properties enable us to compute SH gradient and SH Hessian
via SSH efficiently and accurately. Our work builds upon the recent
work on SSH in the chemical physics field [Bigi et al. 2023]. Our
method explicitly formulates SH Hessian via SSH and proposes a
code generator for efficient and accurate computation of SH Hessian
matrices, leading to up to 3x speedups compared to the previous
method [Bigi et al. 2023].

In this paper, we focus on spherical lights and propose a Hessian-
based error metric for SH lighting of spherical lights with uniform
emittance profile. Our approach subdivides grids taking into account
the distribution of spherical lights and the interpolation errors from
them estimated by using analytical SH Hessian. The distribution
of shading points is also considered to construct adaptive grids
to eliminate unnecessary evaluations of SH Hessian matrices for
empty spaces where no shading point exist. Our experimental results
show that our adaptive grid can render accurate results for scenes
including near and distant spherical lights from shading points,
which is difficult for uniform grids.
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2 Related Work

2.1 Spherical Harmonic Lighting
Sloan et al. [2002] proposed a precomputed radiance transfer frame-
work that encodes distant environmental lighting and the trans-
fer function encompassing the visibility function and the cosine-
weighted BRDF in SH. Sloan et al. [2005] introduced Zonal Har-
monics (ZHs), which are a subset of SHs, to render deformable
objects. To extend the PRT framework, several methods have been
developed to handle deformable objects [Wang et al. 2006], dynamic
scenes [Iwasaki et al. 2007; Ren et al. 2006], and fast computation of
multiple SH products [Xin et al. 2021].
For efficient evaluations of SH, Sloan showed an explicit poly-

nomial representation of SH using Cartesian coordinates [Sloan
2008]. Sloan [2013] derived recurrence formulae of the associated
Legendre polynomial for efficient evaluations of SH. This method
proposed a code generator that exploits the recurrence formulae and
outperforms the previous explicit polynomial representation [Sloan
2008]. Our method follows these lines of research and extends to
generate a code to compute SH Hessian efficiently.
Recent advancements in SH lighting enable us to compute SH

coefficients for near-field illumination from polygonal and spherical
lights analytically. Belcour et al. [2018] proposed an analytic solu-
tion for the integral of SH over a spherical polygonal domain using
Zonal Harmonics Factorization [Nowrouzezahrai et al. 2012]. Wang
et al. [2018] derived a recurrence formula of the integral of Legendre
polynomials over a polygonal domain. Zhou et al. [2020] proposed
an analytical integration method for SH over spherical caps. While
these methods can compute SH coefficients for near-field illumina-
tion analytically, their computational costs are proportional to the
number of lights, which can be expensive for many-light scenes.
Instead of computing SH coefficients at each shading point for

many area lights, several methods exploit the spatial coherence and
smoothness of SH coefficients for computational efficiency. Annen
et al. [2004] proposed a semi-analytical method for spatial gradients
of SHs to interpolate SH coefficients of mid-range illumination. In
recent years, efforts have been made to handle many area lights
efficiently for spherical harmonic lighting [Mézières et al. 2022; Wu
et al. 2020]. These methods prepare a uniform grid encompassing
the entire scene and accumulate SH coefficients and spatial gradi-
ents at sparse grid points. Then, the SH coefficients at each shading
point are interpolated by those stored at neighbor grid points. Wu
et al. [2020] developed analytic SH gradients for polygonal lights.
Mezieres et al. [2022] proposed an efficient calculation method for
SH gradients of spherical lights using recurrence formulae. Unfortu-
nately, thesemethods construct uniform grids without consideration
of the distribution of area lights and lack a mechanism to control
errors arising from the gradient-based interpolation. In contrast,
our method controls such errors using SH Hessian. Our method
subdivides grids adaptively based on Hessian-based error metric,
which is analytically calculated using spherical harmonics Hessian.

2.2 Caching-based methods
Caching-based methods record the illumination information (e.g.,
irradiance and radiance) at sparsely distributed points in the scene,
then the illumination information at a shading point is interpolated

by those stored at nearby cache points [Jarosz et al. 2008; Krivanek
et al. 2005; Křivánek et al. 2006; Ward and Heckbert 2008]. Second-
order derivatives (i.e., Hessian) have been used to measure errors of
cache-basedmethods that interpolate radiance/irradiance using first-
order derivatives (i.e., spatial gradients). Schwarzhaupt et al. [2012]
proposed a Hessian-based error metric for irradiance caching. Marco
et al. [2018] derived Hessian-based error metrics taking into account
occlusions for volumetric radiance caching. These methods calculate
the error metric using Monte-Carlo estimations that can lead to
variance, while our method can calculate the Hessian-based error
metric analytically. SH Hessian can be used to place cache points
adaptively by estimating the interpolation errors, but it remains as
future work.

2.3 Solid Spherical Harmonics (SSH)
SSH have been studied in the fields of mathematics, physics, and
quantum chemistry [Steinborn and Ruedenberg 1973]. Bigi et al. [2023]
proposed an efficient SH evaluation method using SSH and imple-
mented this algorithm in software called sphericart. They derived
a first-order derivative of SSH in the paper and the second-order
derivative of SSH is implemented in sphericart. Our method ex-
tends the work of Bigi et al. in the two-fold. Firstly, we propose a
code generator for SHs and the first/second-order derivatives. While
sphericart also provides a hard-coded implementation, it is limited
to sixth order. Our method can generate codes with much higher
orders. Secondly, we explicitly formulate the SH Hessian and exploit
the similarities between the matrix components. Our method reuses
common components that have already been computed, results in
up to 3x speedups compared to sphericart.

3 Preliminary

3.1 Spherical Harmonics
The real-valued SH 𝑌𝑚

𝑙
for unit direction 𝜔 ∈ S2 are defined as:

𝑌𝑚
𝑙
(𝜔) =


√
2𝐾−𝑚

𝑙
𝑃−𝑚
𝑙

(cos𝜃 ) sin(−𝑚𝜙) (𝑚 < 0)
𝐾0
𝑙
𝑃0
𝑙
(cos𝜃 ) (𝑚 = 0)√

2𝐾𝑚
𝑙
𝑃𝑚
𝑙
(cos𝜃 ) cos(𝑚𝜙) (𝑚 > 0)

, (1)

where 𝜃 and 𝜙 are the spherical coordinates of direction𝜔 , 𝑙 denotes
the order of SH and𝑚 is an integer satisfying −𝑙 ≤𝑚 ≤ 𝑙 , 𝐾𝑚

𝑙
is the

normalization factor, and 𝑃𝑚
𝑙

is the associated Legendre polynomial.

3.2 SH coefficients for spherical lights
The emitted radiance from a spherical light y with radius 𝑟 towards
a shading point x is represented with its SH coefficient 𝐿𝑚

𝑙
(x) [Méz-

ières et al. 2022] as:

𝐿𝑚
𝑙
(x) =

∫
Ω (x)

𝑌𝑚
𝑙
(𝜔)𝑑𝜔 = Λ𝑙𝑌

𝑚
𝑙
(𝜔xy)�̃�𝑙 (x), (2)

where Ω(x) is the projected area of the spherical light y onto the
unit sphere S2 at x, Λ𝑙 =

√︁
4𝜋/(2𝑙 + 1), 𝜔xy = (y − x)/∥y − x∥ is

the unit direction vector from the shading point x to the center of
the spherical light y as shown in Fig. 1. �̃�𝑙 (x) is the zonal harmonics
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Fig. 1. Illustration of computing SH coefficient for a spherical light y pro-
jected onto the unit sphere centered at a shading point x. Our method
computes the spatial gradient with respect to y since the movement of x by
Δ is equivalent to that of y by −Δ. This minus sign is shown in Eq. (6).

(ZH) coefficient for the spherical light and calculated as:

�̃�𝑙 (x) =
√︁
𝜋/(2𝑙 + 1) (𝑃𝑙−1 (𝛼) − 𝑃𝑙+1 (𝛼)), (3)

𝛼 = cos(𝑎(x)), (4)
𝑎(x) = arcsin (𝑟/∥y − x∥) , (5)

where 𝑃𝑙 is the 𝑙-th Legendre polynomial (𝑃−1 (𝛼) = 1 is used to
compute �̃�0 (x)), 𝑎(x) is the half angle of the spherical light projected
onto the unit sphere at x.
Mezieres et al. [2022] derived an analytic calculation method of

the spatial gradient ∇𝐿𝑙𝑚 (x) at shading point x as:

∇𝐿𝑚
𝑙
(x) = −Λ𝑙

(
∇𝑌𝑚

𝑙
(𝜔xy)�̃�𝑙 (x) + 𝑌𝑚𝑙 (𝜔xy)∇�̃�𝑙 (x)

)
, (6)

where the spatial gradient of ZH coefficient ∇�̃�𝑙 (x) is calculated as:

∇�̃�𝑙 (x) =
√︁
(2𝑙 + 1)𝜋∇𝑎(x) sin(𝑎(x))𝑃𝑙 (𝛼), (7)

∇𝑎(x) = −𝑟𝜔xy/(∥y − x∥
√︃
∥y − x∥2 − 𝑟2) . (8)

To compute the spatial gradient ∇𝑌𝑚
𝑙

in Eq. (6), Mezieres et
al. [2022] first performed the partial derivatives 𝜕𝜃𝑌𝑚𝑙 and 𝜕𝜙𝑌𝑚𝑙
with respect to the spherical coordinates (𝜃, 𝜙), then the spatial
gradient ∇𝑌𝑚

𝑙
is converted from the partial derivatives as:

∇𝑌𝑚
𝑙
(𝜔xy) =

©«
𝑥𝑧
Ψ

−𝑦
𝑥2+𝑦2

𝑦𝑧

Ψ
𝑥

𝑥2+𝑦2

−𝑥2−𝑦2

Ψ 0

ª®®®¬
(
𝜕𝜃𝑌

𝑚
𝑙

𝜕𝜙𝑌
𝑚
𝑙

)
, (9)

where (𝑥,𝑦, 𝑧) = y − x and Ψ = (𝑥2 + 𝑦2 + 𝑧2)/
√︁
𝑥2 + 𝑦2. Here-

inafter, we refer this spherical coordinate based derivative calcu-
lation method (with the conversion to Cartesian coordinate) to as
spherical coordinate derivative (SCD) method.

Limitations. While partial derivatives (𝜕𝜃𝑌𝑚𝑙 , 𝜕𝜙𝑌
𝑚
𝑙
) are com-

puted efficiently via recurrence formula, the spherical coordinate
derivative (SCD)method has some drawbacks. Firstly, the recurrence
formulae have a singularity at 𝜃 = 0 since they involve division by
sin𝜃 (see [Mézières et al. 2022] and our supplemental document.).
The conversion from spherical coordinates (𝜃, 𝜙) for spatial gradi-
ents ∇𝑌𝑚

𝑙
also has the same singularity, since the conversion matrix

in Eq. (9) includes division by
√︁
𝑥2 + 𝑦2 = sin𝜃 . Furthermore, this

conversion introduces undesirable computational overhead, which

becomes more problematic when computing the SH Hessian, as the
conversion matrix for the Hessian increases in size (6 × 5). Since
the Hessian is evaluated repeatedly at all grid points, we propose a
faster computation method to address this issue.

3.3 Solid Spherical Harmonics
Solid Spherical Harmonics (SSH) �̃�𝑚

𝑙
(𝑥,𝑦, 𝑧) are variants of SH 𝑌𝑚

𝑙

scaled by the radial distance 𝑟 =
√︁
𝑥2 + 𝑦2 + 𝑧2 as [Bigi et al. 2023]:

�̃�𝑚
𝑙
(𝑥,𝑦, 𝑧) = 𝑟 𝑙𝑌𝑚

𝑙
(𝜔) = 𝑟 𝑙𝑌𝑚

𝑙
(𝑥/𝑟,𝑦/𝑟, 𝑧/𝑟 ) . (10)

Specifically, SSH �̃�𝑚
𝑙
(𝑥,𝑦, 𝑧) are defined as the following equation:

�̃�𝑚
𝑙
(𝑥,𝑦, 𝑧) =


√
2𝐾−𝑚

𝑙
𝑄−𝑚
𝑙

(𝑧, 𝑟 )𝑠−𝑚 (𝑥,𝑦) (𝑚 < 0)
𝐾0
𝑙
𝑄0
𝑙
(𝑧, 𝑟 ) (𝑚 = 0)√

2𝐾𝑚
𝑙
𝑄𝑚
𝑙
(𝑧, 𝑟 )𝑐𝑚 (𝑥,𝑦) (𝑚 > 0)

, (11)

where 𝑄𝑚
𝑙
, 𝑠𝑚 , and 𝑐𝑚 are defined as:

𝑄𝑚
𝑙
(𝑧, 𝑟 ) = 𝑟 𝑙𝑟−𝑚𝑥𝑦 𝑃

𝑚
𝑙
(cos𝜃 ),

𝑠𝑚 (𝑥,𝑦) = 𝑟𝑚𝑥𝑦 sin(𝑚𝜙), 𝑐𝑚 (𝑥,𝑦) = 𝑟𝑚𝑥𝑦 cos(𝑚𝜙),
(12)

where 𝑟𝑥𝑦 =
√︁
𝑥2 + 𝑦2. 𝑄𝑚

𝑙
is the polynomial function of 𝑧 and 𝑟 ,

and is calculated from the following recurrence formulae:

𝑄𝑙
𝑙
= (1 − 2𝑙)𝑄𝑙−1

𝑙−1, (𝑄0
0 = 1)

𝑄𝑙−1
𝑙

= −𝑧𝑄𝑙
𝑙
,

𝑄𝑚
𝑙

=
(2𝑙 − 1)𝑧𝑄𝑚

𝑙−1 − (𝑙 +𝑚 − 1)𝑟2𝑄𝑚
𝑙−2

𝑙 −𝑚 .

(13)

𝑠𝑚 and 𝑐𝑚 are also the polynomial functions of 𝑥 and 𝑦, and are
calculated from the following recurrence formulae:

𝑠𝑚 = 𝑥𝑠𝑚−1 + 𝑦𝑐𝑚−1, 𝑐𝑚 = 𝑥𝑐𝑚−1 − 𝑦𝑠𝑚−1, (14)

where 𝑠0 = 0 and 𝑐0 = 1 are used as the initial values.

4 Proposed Method
The key to efficiently computing the Hessian matrix is the intro-
duction of SSH, which also eliminates the singularity problem men-
tioned in Sec. 3.2. The Hessian matrix 𝐻𝑚

𝑙
∈ R3×3 of SH coefficient

𝐿𝑚
𝑙
(x) for the spherical light y is defined as (arguments are omitted):

𝐻𝑚
𝑙

= Λ𝑙

(
�̃�𝑙H𝑌𝑚

𝑙
+ ∇𝑌𝑚

𝑙
∇⊤�̃�𝑙 + ∇�̃�𝑙∇⊤𝑌𝑚

𝑙
+ 𝑌𝑚

𝑙
H �̃�𝑙

)
, (15)

whereH 𝑓 = ∇∇⊤ 𝑓 is the Hessian operator of a scalar function 𝑓 .
Since the gradient ∇�̃�𝑙 is already derived in Sec. 3.2, we focus on
the derivation of the gradient ∇𝑌𝑚

𝑙
, HessiansH �̃�𝑙 andH𝑌𝑚

𝑙
.

We employ SSH to compute the gradients and Hessians of SH be-
cause SSH is defined in Cartesian coordinates.This Cartesian formu-
lation allows the spatial gradient to be computed directly, bypassing
the need for conversion from spherical coordinates, which improves
computational efficiency. Moreover, this approach avoids the singu-
larity problem encountered in the previous method [Mézières et al.
2022], thereby ensuring more robust computations.
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4.1 SH gradient ∇𝑌𝑚
𝑙

using SSH
By applying the gradient operator to both sides of Eq. (10), we obtain
the following expression:

∇�̃�𝑚
𝑙
(𝜔) = 𝑙𝑟 𝑙−1𝑌𝑚

𝑙
(𝜔)𝜔 + 𝑟 𝑙∇𝑌𝑚

𝑙
(𝜔), (16)

where 𝜔 = (𝑥,𝑦, 𝑧). By putting 𝑟 = 1, we obtain the expression for
computing the gradient of SH using SSH as:

∇𝑌𝑚
𝑙
(𝜔) = −𝑙𝑌𝑚

𝑙
(𝜔)𝜔 + ∇�̃�𝑚

𝑙
(𝜔). (17)

The gradient of SSH for positive𝑚 > 0 is calculated as:

∇�̃�𝑚
𝑙

=
√
2𝐾𝑚

𝑙

©«
𝑥𝑄𝑚+1

𝑙−1 𝑐𝑚 +𝑚𝑄𝑚
𝑙
𝑐𝑚−1

𝑦𝑄𝑚+1
𝑙−1 𝑐𝑚 −𝑚𝑄𝑚

𝑙
𝑠𝑚−1

(𝑙 +𝑚)𝑄𝑚
𝑙−1𝑐𝑚

ª®®¬ . (18)

The gradient of SSH �̃�𝑚
𝑙

for𝑚 ≤ 0 are represented in the similar
way as shown in the supplemental material.

As mentioned in the previous section, SSH is defined in Cartesian
coordinates. Thus, the gradient of SH, computed using Eq. (17), can
be evaluated directly in Cartesian coordinates. For computing the
gradient of SH coefficients (see Eq. (6)), we assume that the SH
component 𝑌𝑚

𝑙
(𝜔) has already been computed. Consequently, the

additional cost of computing the gradient of SH is limited to the
computation of the gradient of SSH, ∇𝑌𝑚

𝑙
(𝜔), which reduces the

overall computational cost.

4.2 SH HessianH𝑌𝑚
𝑙

using SSH
In the similar way to the gradient of SH, we apply the Hessian
operator, H , to Eq. (17). Then, SH Hessian H𝑌𝑚

𝑙
is calculated from

the SSH HessianH�̃�𝑚
𝑙

and the identity matrix 𝐼 as:

H𝑌𝑚
𝑙

=H�̃�𝑚
𝑙

− 𝑙 (𝑌𝑚
𝑙
(𝐼 + (𝑙 − 2)𝜔𝜔⊤) + ∇𝑌𝑚

𝑙
𝜔⊤ + 𝜔∇⊤𝑌𝑚

𝑙
).

The second derivative of SSH in Cartesian coordinates is computed
analytically. For example, the second derivative of SSH 𝜕𝑥𝑥 �̃�

𝑚
𝑙

for
positive𝑚 is calculated as:

𝜕𝑥𝑥 �̃�
𝑚
𝑙

=
√
2𝐾𝑚

𝑙
(𝑥2𝑄𝑚+2

𝑙−2 𝑐𝑚 +𝑄𝑚+1
𝑙−1 (2𝑚𝑥𝑐𝑚−1 + 𝑐𝑚)

+𝑚(𝑚 − 1)𝑄𝑚
𝑙
𝑐𝑚−2) .

(19)

Other components are computed by using 𝑄𝑚
𝑙

in the similar way
and the details are shown in the supplemental material. Note that
we can reuse 𝑄𝑚

𝑙
that have already been calculated to evaluate �̃�𝑚

𝑙

and ∇�̃�𝑚
𝑙

for evaluatingH�̃�𝑚
𝑙

to save the computational cost.

4.3 SH Hessian Code Generator
We propose a code generator to compute the SH Hessian matrix
H𝑌𝑚

𝑙
. Our code generator aims to reuse the previously computed

components for efficient computation. Let us explain the imple-
mentation details for𝑚 = 0 case, and other cases are shown in the
supplemental material. The explicit formulae for the first/second
derivatives of SH 𝑌 0

𝑙
are represented as:

𝜕𝑥𝑌
0
𝑙
= (𝐾0

𝑙
𝑄1
𝑙−1 − 𝑙𝑌

0
𝑙
)𝑥, 𝜕𝑦𝑌

0
𝑙
= (𝐾0

𝑙
𝑄1
𝑙−1 − 𝑙𝑌

0
𝑙
)𝑦,

𝜕𝑥𝑥𝑌
0
𝑙
= (𝐾0

𝑙
𝑄0
𝑙−2 − 𝑙 (𝑙 − 2)𝑌 0

𝑙
)𝑥2 − 2(𝜕𝑥𝑌 0

𝑙
)𝑙𝑥 + 𝐾0

𝑙
𝑄1
𝑙−1 − 𝑙𝑌

0
𝑙
,

𝜕𝑥𝑦𝑌
0
𝑙
= (𝐾0

𝑙
𝑄0
𝑙−2 − 𝑙 (𝑙 − 2)𝑌 0

𝑙
)𝑥𝑦 − (𝜕𝑥𝑌 0

𝑙
)𝑙𝑦 − (𝜕𝑦𝑌 0

𝑙
)𝑙𝑥,

𝜕𝑦𝑦𝑌
0
𝑙
= (𝐾0

𝑙
𝑄0
𝑙−2 − 𝑙 (𝑙 − 2)𝑌 0

𝑙
)𝑦2 − 2(𝜕𝑦𝑌 0

𝑙
)𝑙𝑦 + 𝐾0

𝑙
𝑄1
𝑙−1 − 𝑙𝑌

0
𝑙
.

The coefficient 𝐾0
𝑙
𝑄1
𝑙−1 − 𝑙𝑌

0
𝑙
for the first derivatives 𝜕𝑥𝑌 0

𝑙
and 𝜕𝑦𝑌 0

𝑙

can be shared, and reused for the constant term in 𝜕𝑥𝑥𝑌 0
𝑙
and 𝜕𝑦𝑦𝑌 0

𝑙
.

Our code generator reuses the coefficient 𝐾0
𝑙
𝑄0
𝑙−2 − 𝑙 (𝑙 − 2)𝑌 0

𝑙
for

the monomial terms 𝑥2, 𝑥𝑦, and 𝑦2.

4.4 Hessian matrix of ZH coefficient H �̃�𝑙

The computation of the Hessian matrixH �̃�𝑙 for ZH coefficients in
spherical lights is rather straightforward. It is calculated by differ-
entiating ∇�̃�𝑙 in Eq. (3) as:

H �̃�𝑙 =
√︁
𝜋 (2𝑙 + 1)

(
(𝛼𝑃𝑙 (𝛼) + (𝛼2 − 1)𝑃 ′

𝑙
(𝛼))∇𝑎(x)∇⊤𝑎(x)

+ sin(𝑎(x))𝑃𝑙 (𝛼)H𝑎(x)
)
, (20)

where the Hessian matrixH𝑎(x) is calculated as:

H𝑎(x) = 𝑟
(

𝜔xy𝜔
⊤
xy

(∥y − x∥2 − 𝑟2)3/2
−

𝐼 − 2𝜔xy𝜔
⊤
xy√︁

∥y − x∥2 − 𝑟2∥y − x∥2

)
.

5 Adaptive Grid using Hessian-based Error Metrics
We apply SSH Hessian to the grid-based interpolation method of SH
coefficients for spherical lights [Mézières et al. 2022]. Our method
uses the Hessian matrix 𝐻𝑚

𝑙
in Eq. (15) to estimate the interpolation

errors of SH coefficients 𝐿𝑚
𝑙
(x). Let us consider that a voxel 𝑉 in

the grid and each grid point x stores the SH coefficient 𝐿𝑚
𝑙
(x) and

the spatial gradient ∇𝐿𝑚
𝑙
. The SH coefficient at a point x+Δx in the

voxel 𝑉 is interpolated by using 𝐿𝑚
𝑙
(x) + ∇𝐿𝑚

𝑙
Δx. The difference

between the true SH coefficient 𝐿𝑚
𝑙
(x + Δx) at x + Δx and the

interpolated SH coefficient 𝐿𝑚
𝑙
(x) + ∇𝐿𝑚

𝑙
(x)Δx can be calculated

by the Hessian matrix 𝐻𝑚
𝑙

as:

|𝐿𝑚
𝑙
(x + Δx) − 𝐿𝑚

𝑙
(x) − ∇𝐿𝑚

𝑙
(x)Δx| ≈ 1

2 |Δx
⊤𝐻𝑚

𝑙
Δx|. (21)

By diagonalizing the Hessian matrix 𝐻𝑚
𝑙
, the difference is bounded

by the maximum absolute eigenvalue 𝜆𝑚
𝑙

of 𝐻𝑚
𝑙
. Our method es-

timates the interpolation error 𝑒𝑚
𝑙

of SH coefficient 𝐿𝑚
𝑙

as 𝑒𝑚
𝑙

=

|𝜆𝑚
𝑙
|∥Δx∥2/2. The absolute error 𝐸𝑎𝑏𝑠 (x) and the relative error

𝐸𝑟𝑒𝑙 (x) at the grid point x are calculated as

𝐸𝑎𝑏𝑠 (x) =
∥𝝀∥∥Δx∥2

2 , 𝐸𝑟𝑒𝑙 (x) =
∥𝝀∥∥Δx∥2

2∥𝑳∥ , (22)

where ∥𝝀∥ is the L2-norm of a vector𝝀 that consists of themaximum
absolute eigenvalues 𝝀 = [𝜆00, 𝜆

−1
1 , · · · ], and 𝑳 is the SH coefficient

vector 𝑳 = [𝐿00, 𝐿
−1
1 , · · · ].

The absolute error and the relative error for each voxel 𝑉 are the
mean values of the corresponding errors stored at its adjacent eight
grid points with Δx the diagonal length of the voxel𝑉 . Our method
subdivides the voxel when the interpolation error of the voxel ex-
ceeds the user-defined threshold. Please note that our method only
stores the L2-norm ∥𝝀∥ at each grid point that requires the addi-
tional storage𝑂 (1), instead of storing the Hessian matrices with the
maximum order 𝑙𝑚𝑎𝑥 that requires the additional storage 𝑂 (𝑙2𝑚𝑎𝑥 ).
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Fig. 2. Construction of an occupancy octree (top) and an adaptive grid
(bottom) with shading voxels (blue). Nodes (green) including shading points
are marked as occupied. Voxels whose corresponding nodes in the occupancy
octree are marked as occupied are shading voxels.

5.1 Implementation Details
To estimate the interpolation errors of SH coefficients, our method
requires the calculation of the Hessian matrix 𝐻𝑚

𝑙
that incurs addi-

tional computational costs to the previous gradient-basedmethod [Méz-
ières et al. 2022]. To reduce the computational costs, our method
first detects the voxels including the shading points (referred to as
shading voxels), then SH coefficients 𝐿𝑚

𝑙
, the gradients ∇𝐿𝑚

𝑙
, and the

Hessian matrices 𝐻𝑚
𝑙

of all spherical lights are accumulated only
for the grid points of the shading voxels.
Specifically, to construct an adaptive grid with shading voxels,

our method prepares an auxiliary grid referred to as the occupancy
octree, as shown in Fig. 2. The occupancy octree is constructed in
a bottom-up approach as shown in Fig. 2 (top). Our method first
calculates the bounding box of the entire scene and subdivides the
bounding box with the user-defined finest grid resolution 2N . Then,
for each shading point, the node that contains the shading point is
detected and marked as occupied, as shown in Fig. 2(a). The parent
node is marked as occupied when one of the child nodes is marked
as occupied.This process is repeated in a bottom-up manner.
Next, our method constructs an adaptive grid in a top-down

approach as shown in Fig. 2 (bottom). From the root voxel encom-
passing the entire scene, our method calculates the SH coefficients
𝐿𝑚
𝑙
, SH gradients ∇𝐿𝑚

𝑙
, and the Hessian matrices 𝐻𝑚

𝑙
for all spheri-

cal lights at the grid points of the root voxel as shown in Fig. 2(e).
Then the interpolation error 𝐸𝑎𝑏𝑠 (𝐸𝑟𝑒𝑙 ) is computed for the root
voxel. If the error exceeds the use-defined threshold 𝜖𝑎𝑏𝑠 (𝜖𝑟𝑒𝑙 ), the
root voxel is subdivided into eight child voxels as shown in Fig. 2. If
the error of the voxel exceeds the threshold, but the corresponding
node in the occupancy octree is not marked as occupied, the voxel
is not further subdivided as shown in Figs. 2(f)(g). By repeating this
process, an adaptive grid with shading voxels is constructed.

6 Results
In this section, we first validate our derivation of analytic SHHessian
H𝑌𝑚

𝑙
in Sec. 6.1, then the results of our application to SH lighting

with adaptive grids are shown in Sec. 6.2.

Fig. 3. Visualization of the Hessian matrix 𝐻𝑚
𝑙

of SH coefficients. Top row
visualizes 𝜕𝑥𝑥 component of𝐻 −3

6 evaluated by using (a) our method and (b)
finite difference, and bottom row visualizes 𝜕𝑧𝑧 component of 𝐻 7

2 . Elements
of Hessian matrices are normalized for better visualization. The rightmost
column (c) shows the absolute difference scaled by ten. As shown in the
rightmost images, ourmethod can accurately calculate theHessianmatrices.

6.1 Validation and evaluation of SH Hessian H𝑌𝑚
𝑙

Fig. 3 shows comparisons of the Hessian matrix𝐻𝑚
𝑙

of SH coefficient
𝐿𝑚
𝑙

evaluated using our analytic formula in Eq. (15) and finite dif-
ference of SH coefficients 𝐿𝑚

𝑙
in Eq. (2). To render Fig. 3, a spherical

light with radius 𝑟 = 0.4 is located at (0.2, 1.0, 0.3)⊤, and the Hessian
matrix 𝐻𝑚

𝑙
are evaluated in a square whose top-left and bottom-

right corners are (0.5, 0, 0.5)⊤ and (−0.5, 0,−0.5)⊤, respectively. As
shown in Fig. 3, our formula can provide accurate results.
Fig. 4(a) shows performance comparisons between our method,

SCD, and the sphericart library [Bigi et al. 2023]. Please note that the
previous SCD method [Mézières et al. 2022] does not propose the
calculation method for the Hessian matrix. We derive the recurrence
formulae for the second derivative of the associated Legendre Poly-
nomial 𝑃𝑚

𝑙
with respect to the spherical coordinates (𝜃, 𝜙), then the

second derivatives with respect to the Cartesian coordinate (𝑥,𝑦, 𝑧)
are converted from them. The details of the derivation are described
in the supplemental material. Note that Bigi et al. [2023] do not
provide the second order derivatives of SSH and SH explicitly in
the paper, while the sphericart library implements the computation
for the Hessian matrix, and their method can generate hard-coded
implementations up to sixth-order SHs, while our method can gen-
erate codes to evaluate SH, the gradient, and the Hessian with much
higher orders.
We measured the computational times to evaluate our SH Hes-

sian H𝑌𝑚
𝑙

using SSH H�̃�𝑚
𝑙
, spherical coordinate derivative (SCD)

method, and the sphericart library. The computational times are
measured on Apple M2 Ultra CPU (24 Cores). For each method, the
same set of random 104 directions are used and the average compu-
tational times over 100 executions (single thread) are measured in
Fig. 4. As shown in Fig. 4, our method is the fastest and achieves 3×
speed-ups against the state-of-the-art method [Bigi et al. 2023] for
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Table 1. Mean Square Errors (MSE) (×10−3) of the Hessian matrices evalu-
ated by using our method and the SCD method with different SH orders.
Our method provides no errors up to 16-th SH orders, while SCD provides
errors even for low-order SHs.

Algorithm 4 8 12 16 20
Ours 0.000 0.000 0.000 0.000 0.505
SCD 0.067 0.281 0.637 1.135 2.279

(a) (b)

Fig. 4. Plots of (a) SH Hessian H𝑌𝑚
𝑙

computation times for our method,
SCD, and the sphericart library [Bigi et al. 2023]. Our method achieves
3×/30% for fourth order, and 30%/10% for 20-th order speed-ups against
sphericart/SCD, respectively. The numbers of (b) total operations (addi-
tion/subtraction/multiplication) for ours and SCD.

fourth order SH (0.05549𝜇𝑠 for ours and 0.18093𝜇𝑠 for the sphericart)
and 30% speed-ups against the SCD method (0.07625𝜇𝑠). For 20-th
order SH, our method consistently achieves 30% and 10% speed-ups
against the sphericart library and the previous method, respectively.
Fig. 4(b) compares the numbers of arithmetic operations that are
counted in the generated codes with different SH orders. The num-
ber of operations in the SCD method is about 1.46× for fourth-order
SH and 1.13× for 20-th order SH compared with that of our method,
which corresponds with the computational times in Fig. 4(a).

Table 1 shows the mean square errors (MSEs) of SHHessianH𝑌𝑚
𝑙

using our method and SCD compared with the ground truth evalu-
ated using the sphericart library. As shown in Table 1, our method
can accurately evaluate SH HessianH𝑌𝑚

𝑙
while SCD suffers from

numerical errors arising from the division by sin𝜃 , which makes
the computation of the associated Legendre polynomial 𝑃𝑚

𝑙
and

the conversion from spherical coordinates to Cartesian coordinates
unstable around the poles (𝜃 = 0, 𝜋 ).

6.2 Application to SH lighting with adaptive grids
We have implemented our SH Hessian-based error metric for adap-
tive grids on top of a PRT framework. Our PRT framework calculates
the reflected radiance at each vertex as the shading point. Currently,
our PRT framework is implemented on the CPU, and its GPU imple-
mentation is left for our future work. We tested our adaptive grid
method on a dragon scene (937K triangles) and a living room scene
(1.88M triangles). The SH coefficients 𝐿𝑚

𝑙
for spherical lights and

those for the transfer function (i.e., the product of cosine-weighted
BRDF and the visibility function) are represented by fourth-order
SHs, unless otherwise stated. All the images with 1024 × 768 res-
olutions are rendered using Apple M1 Max CPU (10 Cores). The
reference images were rendered by computing the SH coefficients
𝐿𝑚
𝑙

for all the spherical lights at each shading point in the same

Table 2. Computational Statistics. Grid denotes the grid type, ours indi-
cates adaptive grid and uni indicates uniform grid. N denotes the finest
grid resolution 2N . 𝑁𝑝 indicates the number of grid points of the shading
voxels in thousands. For uniform grids, the number of grid points of all vox-
els/shading voxels are listed.𝑇𝑔 and𝑇𝑟 represent the computational times
(ms) for grid construction and rendering. Equal construction times between
ours and uniform grids are highlighted in bold. The best and second PSNR
values are highlighted in bold and underlined, respectively.

Scene Grid N 𝑁𝑝 𝑇𝑔 𝑇𝑟 PSNR(↑)
dragon ours 6 2.68 1532 56.8 59.0

dragon uni. 3 0.73/0.40 227/128 48.4 21.0
dragon uni. 4 4.91/1.53 1532/481 48.6 35.2
dragon uni. 5 35.94/4.79 11208/1542 48.6 52.8
living ours 6 5.76 4.36 87.5 70.2
living uni. 3 0.73/0.47 0.23/0.15 76.8 26.8
living uni. 4 4.91/2.17 1.61/0.77 76.9 31.3
living uni. 5 35.94/8.84 13.05/4.70 77.5 52.5
living uni. 6 274.63/38.39 122.93/30.36 78.2 70.9

way as the previous methods [Mézières et al. 2022; Wu et al. 2020].
The SH coefficients 𝐿𝑚

𝑙
for spherical lights at each shading point

are interpolated by using the cubic Hermite interpolation method.
Table 2 summarizes the scene configurations and the performance
statistics of our adaptive grid and uniform grids used in the previous
method [Mézières et al. 2022].
Fig. 5 shows comparisons between our adaptive grid and the

uniform grid with 2516 spherical lights. The computational time
for the reference image (Fig. 5(a)) is 6586 ms. Fig. 5(b) shows the
rendering result using our adaptive grid. Fig. 5(c) shows the adaptive
grid that is constructed by using our SH Hessian-based error metric
with the relative error threshold 𝜖𝑟𝑒𝑙 = 5.8. The number of grid
points of shading voxels is 2683 in Figs. 5(b)(c), and the construction
time of this adaptive grid is 1532 ms. The computational time for
Fig. 5(b) is 56.77 ms (17.6 fps). Once the adaptive grid is constructed,
our method achieves interactive rendering, and the total computa-
tional time, including the grid construction (1589 ms), is 4.14× faster
than the traditional method that computes SH coefficients for each
shading point.
Figs. 5(e)(f)(g) show the rendering results using uniform grids

with different resolutions. Previous grid-based methods [Mézières
et al. 2022; Wu et al. 2020] typically use 83 (N = 3) grids. While
a low-resolution grid works well for spherical lights distant from
the grid, it fails for spherical lights on the floor as shown in the
visualization ofMeanAbsolute Percentage Errors (MAPEs) (Fig. 5(d))
and the rendering image (Fig. 5(e)). The interpolation errors on the
floor are prominent in Figs. 5(d) top-right corner and (e). This is
because when the spherical light is located in the voxel, and closer
to the shading point than the grid points, the interpolation error
occurs even if accurate Hermite interpolation is used.

Fig. 5(f) and (g) are rendered by using 163 (N = 4) and 323 (N = 5)
grids, respectively. We first compare our result in Fig. 5(b) with
Fig. 5(f). The grid construction time 𝑇𝑔 for our adaptive grid (the
number of grid points 𝑁𝑝 = 2683) is almost equal to that for 163
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uniform grid where all the grid points (𝑁𝑝 = 4913) are used since
the previous methods [Mézières et al. 2022; Wu et al. 2020] compute
the SH coefficients at all the grid points of a uniform grid. As shown
in Table 2, the computational time 𝑇𝑔 to construct 163 uniform grid
(𝑇𝑔 = 1532 ms) is equal to that for our adaptive grid. As shown in
Fig. 5(b) and (f), our method provides accurate rendering results as
indicated by Mean Square Errors (MSEs) and Peak Signal-to-Noise
Ratio (PSNR). Our method reduces MSE to 1/30 and increases PSNR
by about 24 dB.
Next, we apply our occupancy octree to the uniform grids and

compare our method with 323 grids (𝑇𝑔 = 1542 ms, 𝑁𝑝 = 4786).
While the interpolation errors in the floor are reduced as shown in
Fig. 5(g), MSE and PSNR in Fig. 5(g) are worse than those rendered
by using the adaptive grid. As shown in the bottom right corner of
Fig. 5(d), MAPEs on the dragon model are almost zero, while those
on the floor remain. This indicates that 323 resolution is excessive
for the dragon model, while that is insufficient for the floor. On
the other hand, imperceptibly small MAPEs (< 2%) are distributed
entirely in our method as shown in Fig. 5(d) top-left corner, which
indicates that our Hessian-based error metrics work well both for
distant and near spherical lights.
Fig. 6 shows a comparison of the living room scene between

our adaptive grid and uniform grids with two spherical lights on
the floor. In this scene, the absolute error 𝐸𝑎𝑏𝑠 is used as the error
metric, and the absolute error threshold 𝜖𝑎𝑏𝑠 = 0.15 is used. The
computational time for Fig. 6(b) is 87.46 ms (11.4 fps). For equal
grid construction time comparison with shading voxels enabled, our
adaptive grid (𝑁𝑝 = 5760) is compared with 323 uniform grid with
𝑁𝑝 = 8844. The computational times 𝑇𝑔 for our method and the 323
uniform grid are 4.36 ms and 4.70 ms, respectively. As shown in
Fig. 6(b) and (c), our method provides more accurate results and
increases PSNR by 18 dB in this scene. 643 (N = 6) uniform grid
with 𝑁𝑝 = 38392 grid points can improve PSNR to 70.9 dB, which is
almost the same as ours, but the computational time 𝑇𝑔 (= 30.36𝑚𝑠)
is about 7× slower than that of our method.

Fig. 7 shows a comparison between (a) the Hermite interpolation
method and (b) the trilinear interpolation method. The Hermite
interpolation is effective in our adaptive grids and reduces MAPE
two orders of magnitude, as shown in Fig. 7.
Fig. 8 compares the rendering results of the living room scene

rendered by using uniform grids (first/second rows) and our adaptive
grids (third/fourth rows). As shown in Fig. 8, uniform grids with
83 and 163 resolutions produce visible artifacts.Even if the grid
resolution is increased to 323, visible artifacts cannot be eliminated.
By increasing the grid resolution to 643, artifacts can be removed
at the cost of the increase in the grid construction time. The third
and the fourth rows show the rendering results using our adaptive
grids with different error thresholds 𝜖𝑎𝑏𝑠 , as shown in Fig. 8. Our
adaptive grid with 𝜖𝑎𝑏𝑠 = 4 produces better results than the uniform
grid with 323 resolution in terms of the visual quality, and the grid
construction time is reduced by a factor of about four.
Fig. 9 compares the rendering results of the dragon scene ren-

dered by using our adaptive grids with different finest resolution
parameter N and relative error threshold parameter 𝜖𝑟𝑒𝑙 . The first
column shows the results with 𝜖𝑟𝑒𝑙 = 10, and the second column

shows the results with 𝜖𝑟𝑒𝑙 = 1. As shown in the visualization of
MAPE images, our method can generate adaptive grids with the sim-
ilar errors, indicating that the excessive subdivision is avoided. On
the other hand, for smaller relative error threshold 𝜖𝑟𝑒𝑙 = 1, N = 5
is insufficient and the subdivision of the adaptive grid is limited to
N , as shown in (N = 5, 𝜖𝑟𝑒𝑙 = 1) case. This can be alleviated by
increasing N , as shown in N = 6 and 7.
Fig. 10 shows the performance and error analysis of the living

room scene with different absolute error thresholds 𝜖𝑎𝑏𝑠 . Fig. 10(a)
shows the log-log plots of the number of grid points 𝑁𝑔 and the
computational time 𝑇𝑔 with respect to 𝜖𝑎𝑏𝑠 . As shown in Fig. 10(a),
𝑁𝑝 and 𝑇𝑔 decrease linearly with respect to 𝜖𝑎𝑏𝑠 in log-scale. In this
scene, by halving 𝜖𝑎𝑏𝑠 , MAPE and MAE also halve, as shown in
Fig. 10(b) and (c). This indicates that our error metric can estimate
and control the interpolation errors appropriately. The absolute
error metric tends to subdivide bright regions excessively and dark
regions moderately. It is the opposite of the relative error metric.
Therefore, the relative error metric is recommended for use in bright
scenes, and the absolute error metric is better used for other scenes.

6.3 Discussion
Our method requires the evaluations of the SH HessianH𝑌𝑚

𝑙
for

all the spherical lights, which incurs additional computational costs
compared with the previous gradient-based method [Mézières et al.
2022]. From Table. 2, the computational time per grid point for our
method incurs about 44% to 77% additional costs compared with
the previous method that requires the evaluations of SH and SH
gradient, while our method reduced the evaluation costs by using
SSH as described in Sec. 6.1. Skipping the evaluation of SH Hessians
for distant spherical lights would be a possible solution to reduce
the computational costs, but it remains as our future work.

Rendering with uniform grids is faster than that with our adaptive
grid since, for each shading point, finding the voxel that contains the
shading point is in constant time for uniform grids. In contrast, our
method requires the traversal from the root voxel to the leaf voxel.
From Table. 2, our adaptive grid incurs the additional computational
cost about 13% to 17%, but our method achieves interactive frame
rates as described before.

7 Conclusions
We have introduced spherical harmonics Hessian and solid spherical
harmonics to estimate the interpolation errors of SH coefficients for
spherical lights. We proposed a code generator to compute SH Hes-
sian efficiently and accurately. We showed that our Hessian-based
error metrics can construct an adaptive grid for SH lighting, and our
method can provide much more accurate results than the uniform
grid-based method. SH Hessian and SSH open up new possibilities
for SH operations and applications in computer graphics.

As for future work, we plan to extend our method to estimate the
interpolation errors of SH coefficients for general light sources, such
as polygonal lights. We also want to investigate the applications
and operations of SSH, such as the efficient calculation of triple
product or analytical integral of SSH over the polygonal domain by
exploiting the properties of Cartesian coordinate representation.
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(a) reference (b) ours (MSE: 0.01/PSNR: 58.96) (c) adaptive grid (2683 grid points) of (b)

ours (0.13%) 83 grid (5.28%)

163 grid (0.77%) 323 grid (0.07%)

(e) 83 grid (MSE: 796/PSNR: 20.99) (f) 163 grid (MSE: 30.1/PSNR: 35.22) (g) 323 grid (MSE: 0.05/PSNR: 52.77) 

reference ours

grid 163 grid 323 

10%0%

(h) zoomed in image of the floor

(d) MAPE 

Fig. 5. Comparison of a dragon scene between (b) adaptive grid (ours) and (c) uniform grid with 2516 spherical lights. The best performance is highlighted in
bold with underlined. Our adaptive grid can increase PSNR by 6 dB and reduce MSE to 1/5 compared with 323 uniform grid in equal-time grid construction.

(a) reference (b) ours (#grid: 5760/PSNR:70.23) (c) uniform grid (#grid: 8844/PSNR:52.49)

(d) ours 

(MAPE: 0.005%)

(e) uniform grid 

(MAPE: 0.04%)

(f) visualization of adaptive grid

Fig. 6. Comparison of a living room scene between (b) adaptive grid (ours) and (c) 323 uniform grid. The grid construction times𝑇𝑔 for our method and the 323
uniform grid are 4.36 ms and 4.70 ms, respectively. Our adaptive grid can increase PSNR by 18 dB and reduce MAPE an order of maginutude in this scene.

(a) hermite interpolation (b) trilinear interpolation

(c) MAPE of (a)

(d) MAPE of (b)

MAPE: 0.005%

MAPE: 0.169%

(e) hermite

(f) trilinear

Fig. 7. Comparison between (a) Hermite interpolation and (b) trilinear
interpolation for our adaptive grids. The Hermite interpolation (c)(e) can
provide more accurate results than the trilinear interpolation (d)(f).
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uniform grid 83

Np: 0.23
Tg : 0.15 (ms)

uniform grid 163

Np: 1.61
Tg : 0.77

uniform grid 323

Np: 8.84
Tg : 4.70

uniform grid 643

Np: 38.39
Tg : 30.36

ours (ϵabs=4)
Np: 1.49
Tg : 1.15

ours (ϵabs=2)
Np: 1.90
Tg : 1.50

ours (ϵabs=1)
Np: 2.65
Tg : 2.00

ours (ϵabs=0.1)
Np: 7.05
Tg : 5.26

MAPE: 2.56% PSNR: 26.83 MAPE: 0.78% PSNR: 31.29

MAPE: 0.04% PSNR: 52.49 MAPE: 0.003% PSNR: 70.85

MAPE: 0.14% PSNR: 58.93 MAPE: 0.08% PSNR: 60.92

MAPE: 0.03% PSNR: 65.77 MAPE: 0.004% PSNR: 70.31

Fig. 8. Rendering results of a living room scene using uniform grids and
our adaptive grids with different parameter settings. The first and the sec-
ond rows shows the rendering results using uniform grids with different
resolutions. The third and the fourth rows show the rendering results using
our adaptive grids with different absolute error thresholds 𝜖𝑎𝑏𝑠 . 𝑁𝑝 and𝑇𝑔
are the number of grid points and the computational time for construction,
where shading voxels are used for both uniform grids and adaptive grids.
Uniform grids with low resolutions (N = 3 and 4) suffer from visible arti-
facts due to the interpolation errors. In this scene, by halving the absolute
error threshold 𝜖𝑎𝑏𝑠 , MAPE also halves, indicating that our error metric can
estimate and control the interpolation errors appropriately.

MAPE: 0.22% PSNR: 51.63 MAPE: 0.08% PSNR: 52.76

MAPE: 0.21% PSNR: 52.04 MAPE: 0.01% PSNR: 68.74

MAPE: 0.21% PSNR: 52.04 MAPE: 0.01% PSNR: 72.23

N
=

5
N

=
6

N
=

7

ϵrel = 10 ϵrel = 1

Fig. 9. Rendering results of a dragon scene using our adaptive grid with
different parameter settings of the finest grid resolution N and the relative
error threshold 𝜖𝑟𝑒𝑙 (from top to bottom rows, N = 5, 6, 7, and from left to
right columns, 𝜖𝑟𝑒𝑙 = 10 and 𝜖𝑟𝑒𝑙 = 1 are used).

(a) Np and Tg (b) MSE

(c) MAPE (d) PSNR

Fig. 10. Performance and error analysis of the living room scene with dif-
ferent absolute error thresholds 𝜖𝑎𝑏𝑠 . (a) log-log plots of the number of
grid points 𝑁𝑔 and the computational time 𝑇𝑔 with respect to 𝜖𝑎𝑏𝑠 . The
relationships between 𝜖𝑎𝑏𝑠 and (b) MSE, (c) MAPE, and (d) PSNR are shown.
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