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Abstract
Recent advances in bidirectional path tracing (BPT) reveal that the use of multiple light sub-paths and the resampling of a small
number of these can improve the efficiency of BPT. By increasing the number of pre-sampled light sub-paths, the possibility
of generating light paths that provide large contributions can be better explored and this can alleviate the correlation of light
paths due to the reuse of pre-sampled light sub-paths by all eye sub-paths. The increased number of pre-sampled light sub-
paths, however, also incurs a high computational cost. In this paper, we propose a two-stage resampling method for BPT to
efficiently handle a large number of pre-sampled light sub-paths. We also derive a weighting function that can treat the changes
in path probability due to the two-stage resampling. Our method can handle a two orders of magnitude larger number of pre-
sampled light sub-paths than previous methods in equal-time rendering, resulting in stable and better noise reduction than
state-of-the-art methods.

CCS Concepts
• Computing methodologies → Computer graphics; Ray tracing;

1. Introduction

Bidirectional path tracing (BPT) with multiple importance sam-
pling (MIS) is a robust light transport algorithm used in physically-
based rendering. Traditional BPT iteratively generates a single light
sub-path from the light source and a single eye sub-path from the
camera, and deterministically connects each vertex of the eye and
light sub-paths to generate full light paths. Unfortunately, the tradi-
tional BPT often generates full light paths that give little contribu-
tion since it ignores both the visibility between the vertices of the
two sub-paths and the BSDFs at the vertices.

Recent developments in BPT [PRDD15, NID20] have demon-
strated that the use of multiple light sub-paths and the resampling
of a small number of light sub-paths from them taking into account
the contribution of each connection can improve the rendering effi-
ciency (i.e., the noise reduction). Since the pre-sampled light sub-
paths are shared and reused by all the eye sub-paths, preparing a
small number of pre-sampled light sub-paths leads to correlation of
the light sub-paths, resulting in artifacts. On the other hand, using a
large number of pre-sampled light sub-paths increases the computa-
tion time for the resampling process, making the possible iteration
count smaller, resulting in noise.

To address this problem, we propose a novel two-stage resam-
pling method for BPT using multiple light sub-paths. In the first
stage, important light sub-paths are quickly resampled from a large
number of pre-sampled light sub-paths. In the second stage, the or-
dinary resampling method is used to choose a single light sub-path

from the light sub-paths obtained in the first stage. We also propose
a weighting function tailored to two-stage resampling. By combin-
ing our weighting function with this two-stage resampling method,
our method can reduce the variance and achieve stable noise re-
duction compared with previous BPT methods using multiple light
sub-paths [PRDD15, NID20].

The contributions of our method can be summarized as follows:

• we propose a novel two-stage resampling estimator and formu-
late its variance.
• we apply two-stage resampling to BPT so that it can handle a

large number of light sub-paths without incurring high computa-
tional cost.
• we devise a weighting function capable of treating the changes

in the probability of the light path due to two-stage resampling.

2. Related Work

Bidirectional Path Tracing: BPT iteratively samples sub-paths
from both the camera and the light source for each pixel. The
pixel intensity is estimated by using the connected full light paths
weighted by MIS weighting functions [VG94, VG95, LW93]. Sev-
eral methods aim to improve the connections between sub-paths
by using all pairs of sub-paths across the entire image [PBPP11],
re-using light sub-paths using light vertex caching [DKHS14], and
re-ordering sub-paths [CBH∗18]. These methods, however, do not
consider the contribution of the connections (e.g., the visibilities
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between the connected vertices), resulting in the generation of full
light paths with little contribution.

Probabilistic connections for BPT (PCBPT) provides
importance-sampled connections between the vertices of sub-
paths [PRDD15]. PCBPT prepares multiple light sub-paths shared
by all the eye sub-paths and then resamples a small number of
connections through importance sampling. Tokuyoshi and Harada
proposed Hierarchical Russian Roulette (HRR) for efficient
connections of specular-diffuse-glossy or glossy-diffuse-glossy
paths [TH19]. Unfortunately, the MIS weighting functions used
in PCBPT and HRR remain unaware of the change in the path
probability caused by resampling.

Nabata et al. built upon PCBPT and proposed a resampling-
aware weighting function for BPT using multiple light sub-
paths [NID20]. Although this MIS weighting function can handle
the change in probability due to resampling and can be more effec-
tive when a large number of light sub-paths are used, this method
shares the same problem as PCBPT in that the number of pre-
sampled light sub-paths is limited to several hundreds due to the
overhead of constructing a probability mass function (pmf) for re-
sampling. We address this problem by introducing a two-stage re-
sampling technique.

Many-light Methods and Photon Mapping: Many-light render-
ing [Kel97, DKH∗14] uses multiple light sub-paths the vertices of
which are connected to the last vertex of each eye sub-path whose
length is restricted to one, which can be considered as a variant of
BPT using a single path sampling technique. Georgiev et al. pro-
posed importance caching that resamples a small number of light
sub-path vertices by using cached pmfs [GKPS12], which is later
extended to PCBPT. While our method also uses cached pmfs for
resampling, importance caching is based on many-light rendering
that can suffer from splotches due to the singularity of the ge-
ometry term. Several methods have been proposed to extend the
eye sub-path length [KK04, WKB12] and these methods weigh the
sampled full path using MIS. The MIS weighting functions used
in these methods are designed to reduce the bias, which is dif-
ferent from our aim of reducing variance. Photon mapping (PM)
also uses multiple light sub-paths shared by all the eye sub-paths.
PM can be combined with BPT as an additional path sampling
technique [GKDS12, HPJ12] to improve the robustness. Since our
method is an extension of BPT, our method can be combined with
PM via MIS.

Path guiding: Path guiding is an adaptive importance sampling
method that learns the distributions of the incoming radiance or
the importance prior to sampling. The precomputed distributions
are represented by a Gaussian mixture model (GMM) [VKv∗14,
HEV∗16], an adaptive tree structure [MGN17], or deep neural net-
works [MMR∗19, BMDS19]. Since these methods are orthogonal
to our work, path guiding can be combined with our method for
efficient sampling of sub-paths.

MIS weighting function: In recent years, increasing attention
has been paid to MIS weighting functions. Kondapaneni et
al. [KVG∗19] presented optimal MIS weighting functions by lift-
ing the unnecessary assumption of the non-negativity of the weight-
ing function. Karlik et al. [KŠV∗19] optimized the pdf of the one

sampling technique to reduce the variance. Although these meth-
ods significantly improve the efficiency of MIS, the application
to complex light transport algorithms (e.g., BPT) remains chal-
lenging. Grittmann et al. [GGSK19] proposed variance-aware MIS
weights that can be easily incorporated into the traditional BPT.
This method, however, is not applied to BPT using multiple light
sub-paths.

Resampled importance sampling and Two-stage Sampling: Tal-
bot et al. introduced resampled importance sampling (RIS) for di-
rect illumination computation of image-based lighting [TCE05].
We build upon RIS and briefly review RIS in Sec. 3.1. Recently,
Bitterli et al. presented a reservoir resampling method with spa-
tiotemporal reuse [BWP∗20]. This method is currently applied to
real-time rendering of direct illumination from a massive amount of
light sources, and adaptation to BPT remains challenging. Cline et
al. proposed a two-stage importance sampling method for image-
based lighting [CETC06]. This method employs a two-stage ap-
proach to efficiently generate samples proportional to the product
of lighting and BRDF, which is different from our purpose to han-
dle a large number of samples efficiently.

3. Background

3.1. Resampled Importance Sampling

Let us consider estimating the integral F =
∫

f (x)dx using Monte
Carlo integration. The integral F is estimated using the following
N-sample estimator:

F ≈ 〈F〉N =
1
N

N

∑
i=1

f (Xi)

p(Xi)
,

where Xi is the i-th sample drawn from the probability density func-
tion (pdf) p(x), and N is the number of samples. If the pdf p(x) is
closely proportional to the integrand f , the variance of the estima-
tor 〈F〉N is low. In general, however, it is difficult to find a pdf that
is close to f and is easy to sample since the pdf p should be normal-
ized. Thus the pdf p is usually designed to be partially proportional
to the integrand in practice.

Hereinafter, we explain the estimators by assuming the number
of samples N to be one for brevity, and do not denote the number of
samples in the superscript of the estimator. The N-sample estimator
is simply calculated by drawing N samples and averaging.

Resampled importance sampling (RIS) [Tal05] can draw sam-
ples proportional to any target distribution q̂, which can be (a part
of) the integrand but not necessarily normalized. RIS first generates
M samples (referred to as proposals) {X1, . . . ,XM} from the pdf p,
which is readily sampled. Then RIS draws samples from the set of
proposals X = {X1, . . . ,XM} based on a probability mass function
(pmf) proportional to the target distribution q̂. The (one-sample)
RIS estimator 〈F〉ris is calculated using:

〈F〉ris =
f (X)

q̂(X)

(
1
M

M

∑
j=1

q̂(X j)

p(X j)

)
=

1
M

f (X)

p(X)

∑
M
j=1

q̂(X j)
p(X j)

q̂(X)
p(X)


=

1
M

f (X)

p(X)Pr(X |X)
, (1)
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Table 1: Notations. Subscripts i and j represent the index of the
sample. Subscripts s and t indicate the number of vertices for light
and eye sub-paths, respectively. Concatenations of variables for
paths (e.g., ȳz̄, ȳZ̄t ) indicate the full path connecting the last ver-
tices of two paths.

symbol meaning
f measurement contribution function

x̄,ȳ,z̄ full light path x0 . . .xk, light and eye sub-paths
M1,M2 number of light sub-path samples in each stage
A, As scene surface, s-dimensional product of A

q̂1(x̄), q̂2(x̄) target distributions (a part of f )
q1(x̄),q2(x̄) target pdfs (normalize q̂1 and q̂2)

Q1,Q2 normalization factors (integrate q̂1 and q̂2)
Ȳn set of light sub-paths in n-th iteration
Ȳc subset of Ȳn stored at cache point c

where Pr is the pmf for sampling X from the set of proposals X:

Pr(X |X) =
q̂(X)/p(X)

∑
M
j=1 q̂(X j)/p(X j)

. (2)

The variance of the RIS estimator V [〈F〉ris] is given by (the argu-
ments are omitted for simplicity):

V [〈F〉ris] =
1
M

V
[

f
p

]
+

(
1− 1

M

)
V
[

f
q

]
, (3)

where q is the pdf of the target distribution q̂(x) (i.e., q(x) =
q̂(x)/

∫
q̂(x)dx), referred to as the target pdf. The variance of the

RIS estimator V [〈F〉ris] is a blend of two variance terms V [ f/p]
and V [ f/q] with the reciprocal of the number of the proposals M
being the blending factor. This indicates that the distribution of
the resampled sample X is a blend of the sampling pdf p and
the target pdf q, and the distribution approaches the target pdf
q as the number of proposals M increases.

3.2. Bidirectional Path Tracing (BPT)

Veach formulated the light transport problem as a path integral for-
mulation [VG94], where the pixel measurement I is written as:

I =
∫

Ω

f (x̄)dµ(x̄), (4)

where x̄ = x0 . . .xk is a light path, Ω is the path space, dµ(x̄) =
dA(x0) . . .dA(xk) is the area product measure, and f is the mea-
surement contribution function given by:

f (x̄) = Le(x0,x1)T (x̄)We(xk−1,xk),

T (x̄) = GV (x0,x1)

[
k−1

∏
i=1

ρ(xi−1,xi,xi+1)GV (xi,xi+1)

]
,

where Le is the emittance, We is the pixel sensitivity, ρ is the BSDF,
and GV is the geometry term including the visibility. We summa-
rize our notation in Table 1.

BPT generates an eye sub-path from the camera and a light sub-
path from the light source for each pixel. Then the t-th vertex of the
eye sub-path and the s-th vertex of the light sub-path are connected
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Figure 1: k+2 strategies can sample the same light path of length
k (k = 3 is illustrated). Resampling strategies (t = 2,3) resample
light sub-paths from pre-sampled light sub-paths. Other strategies
including unidirectional sampling (t = 0,4) and light tracing (t =
1) are handled by the traditional BPT.

to generate a full light path x̄ = ȳz̄ = y0 . . .ys−1zt−1 . . .z0, where ȳ,
z̄ are the light and the eye sub-paths, respectively. BPT can generate
the same full light path of length k(= s+ t− 1) in multiple ways
(referred to as strategies). For a full light path of length k, k + 2
strategies can sample the same full light path, where each strategy
is identified by an integer t of the connected eye sub-path vertex
zt−1.

BPT weighs each strategy t using the weighting function wt in
multiple importance sampling (MIS) [Vea97] so that the sum of the
weighting functions for a particular light path x̄ is equal to one (i.e.,
∑

k+1
t=0 wt(x̄) = 1). Under the condition that the sum of the weight-

ing functions is equal to one and the weighting function returns
zero whenever the pdf returns zero, the weighting functions can
be (freely) designed to reduce the variance. The balance heuris-
tic [Vea97] is designed to reduce the upper bound of the variance:

wt(x̄) =
nt pt(x̄)

∑
k+1
i=0 ni pi(x̄)

, (5)

where nt is the number of samples for the t-th strategy, and the pdf
pt(x̄) for the t-th strategy is the product of sampling pdfs for the
sub-paths p(ȳ)p(z̄).

3.3. Resampled Importance Sampling BPT (RISBPT)

Instead of generating a single light sub-path for each eye sub-
path, several BPT-based methods generate multiple light sub-paths
shared by all the eye sub-paths [PRDD15, NID20]. Then for each
eye sub-path, a small number of light sub-paths are resampled from
the pre-sampled multiple light sub-paths.

Nabata et al. interpret the resampling of light sub-paths from the
pre-sampled light sub-paths as RIS in the context of BPT [NID20].
We refer to this as RISBPT. RISBPT uses the resampling strategies
that connect an eye sub-path path vertex to a vertex of the resam-
pled light sub-path taking into account the contribution of the con-
nection. The other sampling strategies (i.e., unidirectional sampling
and light tracing) are handled by BPT, since the unidirectional sam-
pling strategy does not require the connections, and light tracing is
efficiently handled by BPT. For a light path x̄ with length k, the
unidirectional sampling strategies correspond to t = 0,k + 1, and
the light tracing corresponds to t = 1, and the resampling strategies
correspond to t = 2, . . . ,k as shown in Fig. 1.

We now focus on the resampling strategies. The pixel measure-
ment It for the resampling strategy is calculated by integrating the
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product of the measurement contribution function f and the weight-
ing function wt over the light sub-paths of arbitrary length (s≥ 1).
The pixel measurement It is calculated by sampling an eye sub-path
sample Z̄t with t vertices as follows:

1
p(Z̄t)

∑
s≥1

∫
As

wt(ȳsZ̄t) f (ȳsZ̄t)dµ(ȳs),

where p(Z̄t) is the sampling pdf of the eye sub-path sample Z̄t , As

is the s-dimensional Cartesian product of the scene surface A, ȳs is
the integral variable for a light sub-path with s vertices. Analogous
to the RIS estimator 〈F〉ris in Eq. (1), the RIS estimator 〈It〉ris is
calculated from the following equations:

〈It〉ris =
1
M

wt(Ȳ Z̄t) f (Ȳ Z̄t)

p(Ȳ )p(Z̄t)Pr(Ȳ |Ȳ)
, (6)

Pr(Ȳ |Ȳ) =
q̂(Ȳ Z̄t)/p(Ȳ )

∑s≥1 ∑
M
i=1 q̂(Ȳs,iZ̄t)/p(Ȳs,i)

, (7)

where Ȳ is the light sub-path sample resampled from the set Ȳ, and
Pr is referred to as the resampling pmf. In the context of BPT, a
proposal for RIS is a light sub-path and the set of proposals Ȳ is
{Ȳ1,1, . . . ,Ȳs,i, . . .} where Ȳs,i is the i-th light sub-path sample with
s vertices. The target distribution q̂(x̄) in RISBPT is calculated as:

q̂(x̄) = q̂(ȳ,zt−1) = fy(ȳ)ρ(ys−2,ys−1,zt−1)GV (ys−1,zt−1), (8)

where fy(ȳ) is a part of the measurement contribution function f
that depends only on the light sub-path ȳ as:

fy(ȳ) = Le(y0,y1)GV (y0,y1)
s−2

∏
i=1

ρ(yi−1,yi,yi+1)GV (yi,yi+1).
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The key to RISBPT is the resampling-aware weighting function
that can handle the changes in probability density due to resampling
as described in Sec. 3.1. The resampling-aware weighting function
uses the following density pris instead of pt for the resampling strat-
egy t as:

pris(x̄) =
(

1
M

1
pt(x̄)

+

(
1− 1

M

)
1

q(x̄)

)−1

. (9)

Different from RIS, RISBPT requires the normalization factor Q of
the target distribution q̂ to calculate the target pdf q for the weight-
ing functions:

q(x̄) =
q̂(ȳ,zt−1)

Q
p(z̄) =

q̂(ȳ,zt−1)

∑s≥1
∫

As q̂(ȳs,zt−1)dµ(ȳs)
p(z̄)

= q(ȳ|zt−1)p(z̄), (10)

where the normalization factor Q is estimated using Monte-Carlo
integration with pre-sampled light sub-paths.

Since the computation of the resampling pmf Pr and the nor-
malization factor Q for each eye sub-path vertex is costly, RISBPT
computes the resampling pmf and the normalization factor Q at
sparsely distributed cache points (e.g., a small subset of eye sub-
path vertices). The resampling pmf Pr and the normalization factor
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Figure 2: RISBPT is susceptible to light sub-paths with extremely
high contribution. The entire image (especially the whiteboard and
the wall) rendered by RIBPT (top left) is brighter than the reference
(top center). The convergence plot of RISBPT (gray) shows unsta-
ble noise reduction for a small number (M = 50) of light sub-paths,
while that of our two-stage resampling method (light orange) shows
stable noise reduction where the same number (M2 = 50) of light
sub-paths are used in the second stage. RISBPT also suffers from
high intensity noise (right bottom images) due to the path correla-
tion. Our method can alleviate this by using a large number of pre-
sampled light sub-paths in the first stage and yield 2.3× smaller
mean absolute percentage errors (MAPEs).

Q for each eye sub-path vertex are replaced by those stored at the
nearest cache point. The target pdf q is also approximated by using
the nearest cache point ct of the t-th eye sub-path vertex zt−1 as
q(x̄)≈ q(ȳ|ct)p(z̄).

3.3.1. Discussion

RISBPT inherits the properties of RIS. That is, the distribution
of the sampled path approaches the target pdf q when the num-
ber of traced light sub-paths M increases. Since the target pdf
q(∝ fyρGV ) is closer to the measurement contribution function f
than the sampling pdf p(∝ fy), the use of larger M leads to reduced
variance in general. However, the use of larger M also incurs in-
creased computational time for the resampling pmf Pr as it is linear
in M as shown in Eq. (7). In the context of BPT, the computation
of the target distribution q̂ further compounds this problem since
the target distribution q̂ involves the costly visibility tests GV in
Eq. (8). Therefore, the increase in M can decrease the possible iter-
ation count, resulting in increased noise in equal-time rendering.

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



K. Nabata & K. Iwasaki & Y. Dobashi / Two-stage Resampling for Bidirectional Path Tracing

Smaller M can do more iterations in equal-time rendering, but
this leads to the correlation of light sub-paths since the pre-sampled
light sub-paths are shared by all the eye sub-paths, and RISBPT
uses the same sets of pre-sampled light sub-paths for all the cache
points. In addition, a smaller number of pre-sampled light sub-paths
induces unstable noise reduction as shown in the convergence plots
in Fig. 2. The cause of this unstable noise reduction is mainly two-
fold. Firstly, the use of a relatively small number of light sub-paths
can suffer from the light sub-paths with extremely high contribu-
tions. This affects the entire image since the pre-sampled light sub-
paths are shared by all the eye sub-paths, which can be found in
the whiteboard of Fig. 2 (top left). Secondly, the small number of
light sub-paths can undermine the estimation accuracy of the nor-
malization factor Q, and thus the weighting function wt . Therefore,
handling a large number of pre-sampled light sub-paths in an effi-
cient manner is crucial for efficient and stable rendering.

4. Two-stage Resampling

In this section, we propose the theory of two-stage resampling ca-
pable of handling a large number of proposals. Its application to
BPT is described in the next section. Two-stage resampling first
samples M1 proposals X = {X1, · · · ,XM1} using a sampling pdf p
which is readily sampled. Then M2 proposals X = {Xi1 , · · · ,XiM2

}
are resampled from the set of proposals X based on the target distri-
bution q̂1, where X is a subset of proposals X (i.e., the index of the
j-th proposal i j ∈ {1, · · · ,M1}). We refer to this resampling as the
first resampling stage. Two-stage resampling again draws samples
from the subset of proposals X based on the target distribution q̂2,
which is referred to as the second resampling stage. To estimate the
integral of f , the one-sample estimator of the two-stage resampling
is calculated as:

〈F〉tsr =
f (X)

q̂2(X)

(
1

M1

M1

∑
j=1

q̂1(X j)

p(X j)

)(
1

M2

M2

∑
j=1

q̂2(Xi j )

q̂1(Xi j )

)

=
1

M1M2

f (X)

p(X)

∑
M1
j=1

q̂1(X j)
p(X j)

q̂1(X)
p(X)


∑

M2
j=1

q̂2(Xi j )

q̂1(Xi j )

q̂2(X)
q̂1(X)


=

1
M1M2

f (X)

p(X)Pr(X |X,X)
, (11)

where the pmf Pr in two-stage resampling is the product of the two
pmfs P1 and P2 given by:

P1(X |X) =
q̂1(X)/p(X)

∑
M1
j=1 q̂1(X j)/p(X j)

,

P2(X |X) =
q̂2(X)/q̂1(X)

∑
M2
j=1 q̂2(Xi j )/q̂1(Xi j )

.

Owing to the similarity between ordinary RIS and two-stage
resampling, the variance for the two-stage resampling estimator
V [〈F〉tsr] is represented by: (the derivation is shown in the supple-
mental material)

1
M1

V
[

f
p

]
+

(
1− 1

M1

)(
1

M2
V
[

f
q1

]
+

(
1− 1

M2

)
V
[

f
q2

])
,

(12)

where q1 and q2 are the target pdfs of q̂1 and q̂2, respectively.

Intuitively, two-stage resampling is identical to ordinary RIS
when M1 = M,M2 = 1, and q = q1, and the variance in Eq. (12)
matches the variance in Eq. (3).

We now analyze the computational cost of two-stage resampling
and ordinary RIS. To simplify the explanation and the analysis, we
equalize the computational cost of ordinary RIS and that of the
second resampling stage. That is, we assume that the number of
proposals M2 is equal to M and the target distribution q̂2 is equal
to q̂. We also assume that the pmfs P1 for two-stage resampling
are constructed K1 times, and the pmf Pr (and P2) is constructed
K times. Then the computational times for the ordinary RIS and
the two-stage resampling are KMT and K1M1T1 +KMT , where T1
and T are the computational times to evaluate the target distribu-
tions q̂1 and q̂, respectively. Since two-stage resampling performs
another resampling process, the two-stage resampling intrinsically
incurs the computational overhead K1M1T1. However, we have a
degree of freedom to design the target distribution q̂1 and choose
the parameter K1 to reduce the overhead even for a large value of
M1. If M1 is large enough to draw subsets of M2(= M) proposals
multiple times (K) from a single set of proposals X (K1 = 1), and
we can design the target distribution q̂1 such that its computational
cost T1 is small compared to T for q̂2, the computational overhead
to construct the pmf P1 for a large number of proposals M1 can be
amortized.

The advantages of two-stage resampling are two-fold. Firstly,
the variance of two-stage resampling V [〈F〉tsr] in Eq. (12) can be
smaller than that of ordinary RIS V [〈F〉ris] in Eq. (3). When M1 is
large enough to neglect the variance term V [ f/p] in V [〈F〉tsr] and
the target distribution q̂1 is designed to be closer to the integrand
f than the sampling pdf p, the difference between V [〈F〉tsr] and
V [〈F〉ris] is that between the variance terms V [ f/q1] and V [ f/p].
Since the target pdf q1 is closer to the integrand f than the sampling
pdf p, the variance term V [ f/q1] is smaller than V [ f/p] in general,
and thus the variance V [〈F〉tsr] is smaller than V [〈F〉ris]. Secondly,
two-stage resampling can generate multiple different subsets of M2
proposals from a single set of proposals X. This is beneficial to
applications that require M2 proposals multiple times. Two-stage
resampling can mitigate the correlation due to reusing the same set
of proposals multiple (K) times in ordinary RIS by using potentially
different proposals.

5. Bidirectional Path Tracing with Two-stage Resampling

We apply the two-stage resampling approach to RISBPT to handle
a large number of pre-sampled light sub-paths in an efficient man-
ner. An overview of the method is shown in Fig. 3. In the first stage,
we resample a smaller number (e.g. 102) of light sub-paths from a
large number (e.g. 104) of pre-sampled light sub-paths with a sim-
plified and inexpensive target distribution q̂1. Then, in the second
stage, we again resample a light sub-path from the smaller set to
be connected to a given eye sub-path. We devise a weighting func-
tion that can properly treat changes in probability density due to
two-stage resampling.

We show our two-stage resampling approach in Algorithm 1.
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Figure 3: Overview of our method. (a) For each iteration, multiple light sub-paths are generated as proposals in RIS. In this case, M1 = 3
light sub-paths are traced and the set Ȳn consists of eight proposals Ȳn = {y0,1,y0,1y1,1,y0,1y1,1y2,1,y0,2,y0,2y1,2,y0,2y1,2y2,2,y0,3,y0,3y1,3}.
Cache points are also generated on the surface of the scene at each iteration. (b) In the first resampling stage, Ȳn is partitioned into M2
clusters at each cache point. In this case, Ȳn is classified into M2 = 4 clusters C1,C2,C3,C4. The subset Ȳc comprised of M2 light sub-paths
is generated for each cache point c by resampling one light sub-path from each cluster Ci. (c) In the second resampling stage, P2 is calculated
for each cache point. Then a light sub-path is resampled from the subset of pre-sampled light sub-paths stored at the closest cache point c,
and a full light path is sampled.

Algorithm 1 Our two-stage resampling BPT algorithm. The under-
lined sentences show the steps different from RISBPT.

1: for n← 1 to maxIterations do
2: generate Ȳn by tracing M1 paths from light sources
3: generate cache points
4: calculate P1 . Eq. (14)
5: // first resampling stage
6: for each cache point c do
7: classify Ȳn into M2 clusters
8: generate Ȳc by resampling from each cluster

9: // second resampling stage
10: for each pixel do
11: generate one light sub-path and one eye sub-path z̄
12: calculate estimators for other strategies using BPT
13: for each vertex of z̄ with (t ≥ 2) do
14: find the nearest cache point ct
15: resample light sub-path ȳ from Ȳct using P2
16: generate a full path x̄ = y0 . . .ys−1zt−1 . . .z0
17: calculate weighting function wt using ptsr . Eq. (17)
18: calculate 〈It〉tsr using wt and cached Pr . Eq. (15)

19: update pixel intensity using 〈It〉tsr and other estimators

Our method renders an image by iteratively updating the pixel in-
tensities. At each iteration n, we first generate a pre-sampled set Ȳn
of light sub-paths, which is constructed by tracing M1 paths from
the light sources (Line 2). Next, a set of cache points is generated on
the surface of the scene (Line 3). The first resampling stage applies
to the cache points. For each cache point c, all the light sub-paths
in Ȳn are classified into M2 clusters (Line 7). The pmf P1 is com-
puted for each element in each cluster. Using P1, a light sub-path
is resampled from each cluster to create a smaller subset Ȳc whose
size is M2(� M1) (Line 8). Next, the pmf P2 used for the second
stage is calculated for each of the light sub-paths in the subset Ȳc.

5.1. First Resampling Stage

The purpose of the first resampling stage is to create a subset Ȳc
comprising M2 light sub-paths for each cache point c by resam-
pling M2 samples from Ȳn. We use RIS for this resampling pro-
cess. Since RIS requires the construction of a pmf whose cost is
proportional to the number of proposals, the first resampling stage
is expensive when there are many light sub-paths in Ȳn. To address
this problem, we cluster the light sub-paths into a binary light tree
used in Lightcuts [WFA∗05], by treating the last vertex of each
light sub-path as a point source. Furthermore, we use the following
simplified function for the target distribution q̂1:

q̂1(ȳ,c) = fy(ȳ)G(ys−1,c), (13)

where G is the geometry term. The BSDF and the visibility terms
are excluded for efficient evaluation and conservative sampling,
since the discrepancy between the visibility terms for the cache
point c and the eye sub-path vertex can miss light sub-paths with
large contributions. The light sub-paths in Ȳn are partitioned into
M2 clusters C1(c), . . . ,CM2(c) so that the geometry term G for the
light sub-paths in each cluster becomes nearly constant. Then from
each cluster C j(c), a single light sub-path sample Ȳ j is resampled
using the following pmf P1:

P1(Ȳ j,c) =
fy(Ȳ j)/p(Ȳ j)

∑Ȳ∈C j(c) fy(Ȳ )/p(Ȳ )
. (14)

Our method uses fy instead of q̂1 for efficient resampling, since
the values of G in q̂1 are considered to be constant in each cluster.
Moreover, the use of fy enables us to compute the sum of fy/p only
once for all the clusters in the binary light tree since fy is indepen-
dent of the positions of the cache points, making the construction
of the pmfs P1 more efficient. The M2 samples resampled from the
clusters are the set of pre-sampled light sub-paths for cache point
c, Ȳc = {Ȳ1, . . . ,ȲM2}, which is used in the subsequent resampling
stage.

5.2. Second Resampling Stage

In this second stage, we use the target distribution q̂2 = q̂ in Eq. (8),
which is more expensive to evaluate, but the number of propos-
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als, M2, is much smaller than M1. For each vertex of a given eye
sub-path Z̄t , the two-stage resampling estimator 〈It〉tsr is calculated
using the following equation:

〈It〉tsr =
1

M1M2

wt(Ȳ Z̄t) f (Ȳ Z̄t)

p(Ȳ )p(Z̄t)Pr(Ȳ |Ȳ, Ȳ)
, (15)

where Ȳ is the resampled light sub-path from the subset Ȳ. The
resampling pmf Pr(Ȳ |Ȳ, Ȳ) is approximated with that stored at the
closest cache point ct . The resampling pmf Pr at the closest cache
point ct is the product of P1(Ȳ ,ct) and P2(Ȳ ,ct), given by:

P2(Ȳ ,ct) =
q̂2(Ȳ ,ct)/q̂1(Ȳ ,ct)

∑
M2
i=1 q̂2(Ȳi,ct)/q̂1(Ȳi,ct)

. (16)

5.3. Weighting Function for Two-stage Resampling

Next, we explain the weighting functions that aim to reduce the
variance for two-stage resampling. Unfortunately, when the clus-
tering approach (i.e., stratified sampling) is used in the first resam-
pling stage, the variance is no longer expressed in the simple form
of Eq. (12) that can be applied to the same derivation technique as
the balance heuristic. Therefore, we assume that importance sam-
pling is used in the first resampling stage during the derivation of
the variance. This is a reasonable assumption since the variance of
stratified sampling is smaller than that of importance sampling in
general. By using the variance in Eq. (12) and the similarity be-
tween the variance of RIS in Eq. (3) and the density in Eq. (9), the
density for two-stage resampling ptsr(x̄) in the weighting function
wt is given by (the derivation is shown in the supplemental mate-
rial):

ptsr(x̄) =(
1

M1

1
pt(x̄)

+

(
1− 1

M1

)(
1

M2

1
q1(x̄)

+

(
1− 1

M2

)
1

q2(x̄)

))−1

,

(17)

where qi(x̄) is defined as:

qi(x̄) =
q̂i(ȳ,zt−1)

Qi
p(z̄) = qi(ȳ|zt−1)p(z̄),

where Qi is the normalization factor for the i-th distribution func-
tion q̂i. The target pdfs q1 and q2 are approximated by q1(ȳ|ct)p(z̄),
and q2(ȳ|ct)p(z̄) of the closest cache point ct for the t-th eye sub-
path vertex zt−1. The weighting function wt for two-stage resam-
pling uses the probability density ptsr instead of pt for the resam-
pling strategies. The probability density ptsr approaches the target
pdf q2 for sufficiently large M1 and M2.

5.4. Implementation Details

Our two-stage resampling BPT method builds upon RISBPT, and
thus inherits from the implementation of RISBPT. Specifically, our
method estimates the normalization factors Qi (used for the weight-
ing function wt ) and the measurement contribution function f , in-
dependently, since E[wt f ] = E[wt ]E[ f ] holds only when wt and f
are estimated independently. To do so, our method uses the set of
proposals Ȳn to estimate the measurement contribution function f ,
and the normalization factors Qi are estimated by using the set of
proposals Ȳn−1 of the previous iteration. Since the positions of the

cache points change at each iteration, the normalization factor Qi at
cache point c of the current iteration is calculated from the average
of Qi estimated in the previous iteration at nearby cache points of
c.

Our method can use multiple cache points, so as not to miss im-
portant light sub-paths due to the difference between the target dis-
tribution function q̂2 stored at the nearest cache point and the eye
sub-path vertex. Our method uses Nc closest cache points and a vir-
tual cache point that stores a special resampling pmf with uniform
distribution. We select one cache point from these (Nc + 1) cache
points uniformly, then the resampling process is performed using
the selected cache point. For multiple cache points, the density ptsr
used in the weighting function wt is replaced by the average of the
densities calculated at (Nc +1) cache points and is given by:

ptsr(x̄) =
Nc+1

∑
k=1

ptsr,k(x̄)/(Nc +1),

where ptsr,k is calculated by Eq. (17) using the target pdfs q1 and
q2 stored at the k-th nearest cache point. The two-stage resampling
estimator 〈It〉tsr for multiple cache points is then modified as fol-
lows:

〈It〉tsr =
1

M1M2

wt(Ȳ Z̄t) f (Ȳ Z̄t)

p(Ȳ )p(Z̄t)Pr(Ȳ |Ȳ, Ȳ)

ptsr,i(Ȳ Z̄t)

ptsr(Ȳ Z̄t)
,

where i is the index of the selected cache point.

5.5. Discussion

We validate our two-stage resampling approach by comparing it
with RISBPT in equal-iteration rendering and equal-time render-
ing. Fig. 4 shows the rendering results by RISBPT with M = 104

and our two-stage resampling with M1 = 104 and M2 = 512.
Figs. 4(a) and (b) show a comparison for an equal number of iter-
ations (16 iterations) comparison. The image in Fig. 4(a) rendered
by our two-stage resampling approach is almost the same quality
as that in Fig. 4(b) rendered by RISBPT, albeit the original target
distribution q̂2 is not used for all proposals. In equal-time rendering
(2 min), more iterations can be performed in two-stage resampling
(96 iterations) than with RISBPT (16 iterations), resulting in re-
duced noise as shown in Fig. 4(b) and (c).

6. Results

We evaluate our two-stage resampling method by comparing with
BPT, PCBPT [PRDD15], and RISBPT [NID20]. All the images are
rendered at a resolution of 1280× 720 on a PC with an Intel Core
i9-7890XE CPU with 18 cores. Fig. 5 shows comparisons between
BPT, PCBPT, RISBPT, and our method. We measure mean abso-
lute percentage error (MAPE). The numbers of pre-sampled light
subpaths, M1 and M2, are set to 104 and 200, respectively. These
values are determined experimentally, discussed in Sec. 6.1. To in-
vestigate the effectiveness of our two-stage resampling method, we
use the same number of light sub-paths (M = M2) and the same tar-
get distribution q̂ = q̂2 (Eq. (8)) in PCBPT and RISBPT. We use the
vertices of 0.4%×W ×H eye sub-paths as the cache points where
W and H are the width and the height of the image, and the number
of nearest cache points Nc is set to three in PCBPT, RISBPT, and
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Figure 4: Comparison between RISBPT [NID20] and two-stage
resampling in equal number of iterations (16 iterations) and equal
rendering time (2 min). After 16 iterations, (a) two-stage resam-
pling yields similar results as (b) RISBPT, though q̂2 is not used for
all proposals in two-stage resampling. The computation time for
(a) two-stage resampling is 21 seconds and that for (b) one-stage
resampling is 2 min. In equal rendering time, (c) two-stage resam-
pling can iterate 96 times, while the iteration count for (b) RISBPT
is 16. The two-stage resampling yields much better results (2.4×
smaller errors) as shown in the insets that visualize the absolute
percentage errors.

our method. The number of resampled light sub-paths is set to one
in PCBPT, RISBPT, and our method. As shown in the zoomed-in
images and the MAPEs, our method outperforms BPT, PCBPT, and
RISBPT in these scenes.

The Sponza scene is illuminated by an environment map, where
the illumination enters from a small region at the top of the build-
ing. The inner wall beyond the arches is illuminated by indirect
illumination, and it is difficult to sample such light paths due to
the occlusions. RISBPT yields better results than BPT and PCBPT
since it considers the contribution of the connections and provides
proper weights. However, the right arch (bottom image) in RISBPT
is slightly brighter than the reference and noise can be seen on the
wall beyond the arch. Since our method uses a large number of
light sub-paths and different subsets of pre-sampled light sub-paths
at cache points, it can sample light paths with non-zero contribu-
tions for such difficult cases.

The Door scene is illuminated by an area light source located in
the room next to the door. As shown in the zoomed-in image of
RISBPT, the floor under the table is brighter than the reference due
to the effects of light sub-paths with high contribution. Our method
can avoid such artifacts due to the use of M1 = 104 pre-sampled
light sub-paths and can reduce noise as shown in the zoomed-in
images.

The Classroom scene is illuminated by area light sources located
on the ceiling and an environment map. In this scene, RISBPT can
considerably reduce noise compared with BPT and PCBPT. How-
ever, the artifacts can still be seen in RISBPT (i.e., the wall of the
hallway in RISBPT is brighter than the reference) even though the
number of pre-sampled light sub-paths increases from M = 50 (in
Fig. 2) to M = 200 (in Fig. 5). Our method can mitigate such ar-
tifacts and can reduce noise further (2.61× smaller MAPE than
BPT).

The Bedroom scene is illuminated by an environment map,
where the illumination enters from a small gap in the curtain.

Although PCBPT considers the visibilities to resample light sub-
paths, PCBPT has larger variance than the traditional BPT, since
the weighting functions used in PCBPT are unaware of the changes
in path probability and it does not assign larger weights to resam-
pling strategies. RISBPT can assign larger weights to resampling
strategies and can reduce variance. However, RISBPT can be easily
affected by light sub-paths with high contribution since it assigns
large weights to light paths sampled by resampling strategies. The
zoomed-in images (the bed comforter and the wall) in RISBPT are
brighter than the reference. On the other hand, since our method
generates a large number of light sub-paths in the first resampling
stage, the effects of light sub-paths with high contribution are miti-
gated and our method can render less noise images.

The House scene is illuminated by area light sources inside the
house and an environment map. The House scene is rendered by
each BPT method combined with PM via VCM/UPS [GKDS12,
HPJ12]. In this scene, the bottom zoomed-in image of RISBPT is
slightly brighter than the reference, but that of our method is much
more similar to the reference image.

Compared with RISBPT, our method yields 1.15, 1.38, 1.47,
1.33, and 1.10 times smaller MAPEs in these scenes (from top to
bottom in Fig. 5), which correspond, approximately, to 1.33, 1.91,
2.15, 1.76, and 1.20 times faster convergence.

The convergence plots on log-log scales of the four methods are
shown in the rightmost column of Fig. 5. As shown in the con-
vergence plots of RISBPT (especially in the Classroom and Bed-
room scenes), the noise reduction in RISBPT is unstable, though
it eventually converges. This unstable noise reduction is problem-
atic for progressive rendering. Although Fig. 5 uses M = 200 pre-
sampled light sub-paths, the convergence plot of the Classroom
scene in RISBPT still looks unstable. On the other hand, our two-
stage resampling method achieves stable and better noise reduction
as shown in the convergence plots.

6.1. Number of light sub-paths M1 and M2

We first measured the MAPEs and the number of iterations of the
Sponza scene with 10 min rendering for sparsely sampled values
of M1 = 103,104,105 and M2 = 100,500,1000 as shown in Fig. 6.
In this experiment, M1 = 104 and M2 = 100 or 500 yield small
values of the MAPEs, and M2 = 103 leads to larger errors and a
smaller number of iterations since the computational cost of the
resampling pmf P2 is high. Additionally, we measured the MAPEs
for M1 = 100 and 5×105 with fixed M2 = 100. When M1 = 100 is
used, MAPE increases from 5.63%(M1 = 103) to 7.53%, indicating
that small M1 does not make effective use of two-stage resampling.
When M1 = 5× 105 is used, MAPE increases from 5.74%(M1 =
105) to 6.38% and the interation count decreases from 413 to 353,
since large M1 incurs a high computational cost for constructing the
pmf P1 even though P1 is constructed once per iteration and reused
for all the cache points. We found that M1 = 104 and relatively
small values (around 100) of M2 work fine.

As shown in the graphs on the right of Fig. 6, the iteration count
in equal-time rendering (i.e., the computational time per each iter-
ation) depends largely on the number of light sub-paths M2 in the
second resampling stage, not on M1 in the first resampling stage.
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Figure 5: Equal-time comparisons between BPT, PCBPT, RISBPT, and our method. M = 200 is used for PCBPT and RISBPT, and M1 =
104,M2 = 200 is used for our method. Bold entries indicate the lowest MAPEs or the lowest relative mean square error (relMSE) among four
BPT methods. Our method yields the lowest MAPE in all these scenes. The rightmost images show the convergence plots on log-log scale of
four methods. As shown in the plots, RISBPT with M = 200 (gray colored plots) shows unstable noise reduction (Classroom and Bedroom)
though it eventually converges, while our method (light orange colored plots) provides stable and better noise reduction due to the use of two
orders of magnitude larger number of light sub-paths than PCBPT and RISBPT. Moreover, RISBPT can suffer from the light sub-path with
extremely high contribution, resulting in bright images as shown in the floor of Door scene and the wall of Bedroom scene.
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Figure 6: MAPEs (left) and the iteration count (right) of the Sponza
scene (rendering in 10 min) for changing the parameters M1 and
M2. Since our method uses the inexpensive target distribution q̂1
and the pmf P1 is constructed once per iteration, the computational
time depends largely on M2.

This indicates that the additional computational overhead of the
first resampling stage is negligible and can be amortized using our
method.

Next, we measured the MAPEs and the number of iterations for
various scenes by changing M2 (M1 is fixed to 104 and the ren-
dering time is 10 min) as shown in Fig. 7. Fig. 7 shows a trade-off
between the computational time and the number M2 of pre-sampled
light sub-paths in the second resampling stage. Using a large num-
ber for M2, the distribution of the sampled light path approaches
the target pdf q2, which is much closer to the integrand than the
sampling pdf p and q1, resulting in reduced noise. However, it also
incurs high computational costs to construct the resampling pmf Pr,
resulting in a smaller number of iterations as shown in the bottom
of Fig. 7. On the other hand, using a small number for M2, we can
do more iterations due to the small computational time required for
resampling, but it cannot benefit from resampling and can suffer
from correlation of the light sub-paths. Although the best perfor-
mance (the lowest MAPE) depends on the scene, M2 = 200 yields
good results for various scenes (except for the Bedroom scene ren-
dered by our method with path guiding, which we will discuss in
Sec. 6.4).

We also compared our method with RISBPT for various num-
bers of M(= M2) in Fig. 8. Our method consistently yields smaller
MAPEs for various numbers of M, except for the Sponza scene
with M(= M2) = 800. However, the difference is subtle (6.31% for
RISBPT and 6.33% for our method) in this case.

6.2. Performance breakdown of RISBPT and our method

Fig. 9 shows the performance breakdown of RISBPT (resampling
once) and our method (two-stage resampling) for various numbers
M(= M2) of light sub-paths. The legends pmf, render, and total
indicate the average computational times for constructing the re-
sampling pmfs, and the rendering and total times (including the
generation of light sub-paths and cache points), respectively. As ex-
pected, the computational time for the pmf scales linearly with M
for both RISBPT and our method. This indicates that, for RISBPT,
simply increasing the number M of pre-sampled light sub-paths to
that used in our method (M1 +M2 ≈ 104) is impractical. Although
the computational time for the pmf using our method are about as
twice as those for RISBPT due to the overhead of the first resam-
pling stage (Lines 7&8 in Algorithm 1), the net overhead of two-
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Figure 7: MAPEs (top) and the iteration count (bottom) for various
scenes for changing M2 (M1 is fixed to 104, rendering in 10 min).
Bedroom(pg) and House(vcm) indicate that our method is com-
bined with path guiding and VCM, respectively. M2 = 200 works
fine in various scenes except for the Bedroom scene rendered by
our method with path guiding.

stage resampling ranges from 27%(M = 200) to 39%(M = 800) of
the total rendering time.

6.3. Effects of Weighting Function

We evaluate the effects of our weighting function using ptsr in
Fig. 10. We compare our weighting function with the balance
heuristic (i.e., using pt instead of ptsr) used in PCBPT [PRDD15]
and HRR [TH19] by incorporating it into our two-stage resam-
pling BPT. As shown in the zoomed-in images and the MAPEs,
the balance heuristic cannot reap the benefits of two-stage resam-
pling since it is unaware of the change in the probability density.
When the balance heuristic is used in two-stage resampling BPT,
the number of iterations decreases from 688 for PCBPT (i.e., re-
sampling once with the balance heuristic) to 304 due to the over-
head, resulting in increased noise from 10.2% in PCBPT to 18.0%
as shown in Fig. 10 right, while our method yields 2.86× smaller
MAPEs as shown on the left of Fig. 10.

We also incorporate the resampling-aware weighting function
using pris [NID20] into our two-stage resampling BPT by substi-
tuting M = M2 and q = q2 in Eq. (9). The value of MAPE in this
case is 14.5%, and our method yields 2.30× smaller MAPE (6.3%).
This indicates that our method can properly treat the changes in
probability density due to two-stage resampling, even though our
method approximates the variance by assuming that importance
sampling is used in the first resampling stage.

6.4. Discussion

We render the Bedroom scene using BPT, PCBPT, RISBPT,
and our method, all of which are combined with path guid-
ing [VKv∗14]. Fig. 11 shows the convergence plots for M(=M2) =
200 and the MAPEs of RISBPT and our method with varying num-
bers of M(= M2) and a rendering time of 10 min. For a relatively
small number of light sub-paths (e.g., M = 50), RISBPT outper-
forms our method since path guiding can generate important light
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Figure 8: Comparison between RISBPT and our method for various numbers of M(= M2). Our method yields smaller MAPEs than RISBPT
for various M2.
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Figure 9: The average computational times per iteration of con-
structing pmf (pmf), rendering (render), and the total (total) in RIS-
BPT (left) and ours (right) of (a) Sponza and (b) Classroom scenes.
As expected, the computational times for constructing resampling
pmfs increase linearly in the number of light subpaths M.

sub-paths even for scenes with difficult visibilities. In the case of
M = 200, the MAPEs of RISBPT and our method are 11.82% and
11.79%, respectively. When combined with path guiding, the com-
putational times for rendering are dominant (74% for M = 50), and
the ratios for constructing the pmfs become relatively small (26%
for M = 800). Therefore, the overhead due to the increase in M is
small compared with other scenes, and thus our method combined
with path guiding becomes more effective for larger M (MAPEs are
10.5% and 10.9% for M = 400 and 800, respectively).

6.5. Limitation and Future Work

Cache-based methods: Our method inherits the drawbacks of
PCBPT and RISBPT (i.e., cache-based methods). The discrepancy
between the target pdfs of the eye sub-path vertex and the nearest
cache point (e.g., shadow boundaries) can deteriorate the rendering.

Difficult light paths: Similar to BPT and PCBPT, our method has
difficulties in connecting specular-diffuse-glossy or glossy-diffuse-
glossy paths. To handle such difficult paths, our method can be
combined with a complementary method (e.g., HRR [TH19]), but
we leave this for future work.

Increasing the number of proposals in the second stage: Al-
though our two-stage resampling method can handle a large num-
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Figure 10: Comparison between our weighting function using ptsr
and the balance heuristic using pt which is incorporated into our
two-stage resampling BPT. Simply incorporating our two-stage re-
sampling incurs the computational overhead, leads to the increased
noise. The combination of our weighting function and the two-stage
resampling BPT can yield 2.86× smaller MAPEs in equal-time (10
min) rendering.

ber of proposals in total, it is currently difficult to increase the
number of proposals used in the second resampling stage, same as
PCBPT and RISBPT. However, as shown in Fig. 7, the MAPEs for
small M2 are comparable to the best cases thanks to our two-stage
resampling.

In this paper, the two-stage resampling method is applied to BPT.
We believe that two-stage resampling can be applied to other appli-
cations, such as direct illumination computation for many lights.

7. Conclusions

We presented a two-stage resampled importance sampling (RIS)
method and applied it to BPT. Our two-stage resampling BPT can
handle a two orders of magnitude larger number of pre-sampled
light sub-paths, which can alleviate the artifacts due to light sub-
paths with high contributions and improve the estimation accuracy
of the weighting function, resulting in stable noise reduction. Two-
stage resampling BPT enables us to use different subsets of pre-
sampled light sub-paths at cache points, which can mitigate the path
correlation due to the reuse of light sub-paths. We also proposed a
weighting function that can handle changes in path probability due
to two-stage resampling. By combining our two-stage resampling
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Figure 11: Convergence plots (left) for the Bedroom scene ren-
dered by BPT, PCBPT, RISBPT, and our method, all of which are
combined with path guiding with M = 200. In this case, MAPE
of our method (11.79%) is slightly better than that of RISBPT
(11.82%). MAPEs of RISBPT and our method combined with path
guiding for varying numbers of pre-sampled light sub-paths M(=
M2) are shown in the right.

BPT with the weighting function, our method achieves up to 2.3
times smaller MAPEs than state-of-the-art methods in equal-time
rendering.
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